Jerzy Niewiarowski, Institute of Mathematics, University of Lodz, ul. Banacha 22, 90-238 Lodz, POLAND.

MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES

We introduce the following notation.

Let $\frac{1}{2}$: $I \rightarrow R$ (where I = [0,1]).

If a function $\frac{1}{2}$ has a property P, we denote this fact by $P(\frac{1}{2})$.

Let $f : I \times I \rightarrow R$. Then for each $x \in I$ we consider $f_X(y) = f(x,y)$ as a function of y and for each $y \in I$ we consider $f^y(x) = f(x,y)$ as a function of x.

We put

$$A_{x}(f,P) = \{x;P(f_{x})\}$$
 and $A_{y}(f,P) = \{y;P(f^{y})\}.$

Let $A_1 \in I$ and $A_2 \in I$. We investigate conditions on the sets A_1 and A_2 under which there exists a function f such that $A_1 = A_X(f,P)$ and $A_2 = A_y(f,P)$, where P is a certain fixed property such as "nondecreasing", "increasing", "nondecreasing and continuous", "increasing and continuous", "of bounded variation".

Then we construct a function fulfilling these conditions. At first we suppose that P means "nondecreasing".

Theorem 1. Let $A_1, A_2 \in I$. Then there exists a function f(x,y) defined on $I \times I$ such that $A_1 = A_X(f,P)$ and $A_2 = A_Y(f,P)$ if and only if

1.
$$I \neq A_1$$
 and $I \neq A_2$ or
2. $A_1 = A_2 = I$ or
3. $A_1 = I$, $A_2 \neq I$ and $card(\overline{A_2} - A_2) \notin x_0$ or
 $A_2 = I$, $A_1 \neq I$ and $card(\overline{A_1} - A_1) \notin x_0$.

Proof. Sufficiency. If condition 1° or 2° is fulfilled, we define the function f(x,y) in the following way: