Miklos Laczkovich, 1092 Budapest, Erkel u. 13/a, Hungary

David Preiss, MFFUK, Sokolovska 83, 18600 Prague 8, Czechoslovakia

Clifford Weil, Mathematics Department, Michigan State University, East Lansing, MI 48824-1027, USA

Infinite Peano derivatives

Recall that a function $f:\mathbb{R} \ \mathbb{R}$ has a (finite) n th Peano derivative at x means that there are numbers f(x), f(x), $\cdots_n f(x)$ such that (1) $f(x + h) = f(x) + hf(x) + \cdots + h^n f(x)/n! + o(h^n)$ as h 0. If (1) holds as h 0⁺, then we say that f has an n th Peano derivative from the right at x and denote the numbers instead by $f_+(x)$, $\cdots_n f_{H^+}(x)$.

If f has an (n - 1) th Peano derivative at x and if

(2)
$$\lim_{h} \frac{f(x+h) - f(x) - \cdots - h^{n-} f_{n-}(x)/(n-1)!}{h^{n}/n!} = +,$$

then we write $f_n(x) = +$. We define $f_n(x) = -$ in a similar way. Furthermore $f_{n+}(x) = +$ or - is defined by letting h 0 int (2).

Theorem 1: If f has an n th Peano derivative, $f_n(x)$, at each x in **R** with infinite values allowed, then f_n is a function of Baire class one.

(This theorem originally appeared in [1] but with an invalid proof.)

To establish further properties of such functions f_n the following auxiliary theorem is useful and of interest in its own right.

Theorem 2: If $f_n(x)$ exists for all x in R with infinite values allowed, and if f_n is bounded above or below on an interval I, then $f_n = f^{(n)}$, the ordinary n th derivative of f, on I.

This result can be established by copying the proof of the corresponding assertion for the finite case from [2], [4] or [5] and making the necessary minor changes. We chose the last of these three since it required only a small modification in a lemma.

Using Theorem 2 we establish the following properties of Peano derivatives.