Real Analysis Exchange Vol.16 (1990–91)

Ján Borsík, Matematyký ústav SAV, Grešákova 6, 040 01 Košice, Czechoslovakia

Jozef Doboš, Katedra matematiky SjF VŠT, Švermova 9, 040 01 Košice, Czechoslovakia

ON SIMPLE CONTINUITY POINTS

Throughout this paper we assume that X and Y are topological spaces. The letters N, Q and R stand for the set of natural, rational and real numbers, respectively.

N. Biswas in [1] introduced the following concept of simple continuity.

Definition 1. A function $f : X \to Y$ is said to be simply continuous if for every open set V in Y the set $f^{-1}(V)$ is a union of an open set in X and a nowhere dense set in X.

The purpose of the present paper is to introduce a suitable pointwise definition of that notion and to give a characterization of the set of all simple continuity points.

Definition 2. We say that $f: X \to Y$ is simply continuous at a point $x \in X$ if for each open neighborhood V of f(x) and for each neighborhood U of x the set $f^{-1}(V) \setminus \inf f^{-1}(V)$ is not dense in U. Denote by N_f the set of all points at which f is simply continuous.

REMARK 1. Let $f: X \to Y$. It is easy to verify that

- (a) f is simply continuous in the sense of Biswas if and only if $N_f = X$,
- (β) $Q_f \subset N_f$, where Q_f denotes the set of all points at which f is quasicontinuous (see [8]).

Lemma 1. Let $f : X \to Y$. Then for each open set V in Y the set $N_f \cap (f^{-1}(V) \setminus int f^{-1}(V))$ is nowhere dense in X.

PROOF. Let V be an open set in Y. Put $W = f^{-1}(V) \setminus \inf f^{-1}(V)$. It is easy to see that $W \cap \inf \operatorname{cl} W \subset X - N_f$. Hence the set $N_f \cap W \subset (N_f \cap W) \setminus \operatorname{int} \operatorname{cl} W \subset W \setminus \operatorname{int} \operatorname{cl} W$ is nowhere dense in X.