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 ON SIMPLE CONTINUITY POINTS

 Throughout this paper we assume that X and Y are topological spaces. The
 letters N, Q and R stand for the set of natural, rational and real numbers, respec-
 tively.

 N. Biswas in [1] introduced the following concept of simple continuity.

 Definition 1. A function f : X -* Y is said to be simply continuous if for
 every open set V in Y the set /-1(V) is a union of an open set in X and a nowhere
 dense set in X.

 The purpose of the present paper is to introduce a suitable pointwise definition
 of that notion and to give a characterization of the set of all simple continuity
 points.

 Definition 2. We say that f : X - ► Y is simply continuous at a point x € X
 if for each open neighborhood V of f(x) and for each neighborhood U of x the set
 /-1(V) ' int /-1(V) is not dense in U . Denote by Nj the set of all points at which
 f is simply continuous.

 Remark 1. Let / : X - ► Y . It is easy to verify that

 (a) / is simply continuous in the sense of Biswas if and only if Nj = X ,

 (ß) Qf C Nf, where Q ¡ denotes the set of all points at which / is quasicontinuous
 (see [8]).

 Lemma 1. Let f : X - > Y . Then for each open set V in Y the set N} fi
 (/-1(V) ' int f~l(V)) is nowhere dense in X.

 Proof. Let V be an open set in Y . Put W = /-1(V)'int /-1(V). It is easy to
 see that W D int cl W C X - N}. Hence the set NjHWc (Nf D W) ' int cl W C
 W ' int cl W is nowhere dense in X.
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