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 Sets which are Well-Distributed and Invariant Relative

 to All Isometry Invariant Total Extensions of Lebesgue
 Measure

 1 Introduction

 In this paper we discuss subsets A of the real line having the property

 fi(A i)J) = a (1)

 for any interval J of the real line, where 0 < a < 1 and fi is an isometry-
 invariant extension of the usual Lebesgue measure A on the real line. In [18],
 Simoson considers the notion of a set having this property, but with /z re-
 placed by the Lebesgue outer measure A*. Simoson calls such a set a comb ,
 and goes on to show that no comb exists. The purpose of this paper is to
 show that such sets do exist if the outer measure is replaced by suitable ex-
 tensions of the Lebesgue measure. In particular, for any aÇ (0,1), there are
 sets A , which we shall call a-shadings of R, or combs of shade a, which have
 the property that for any finitely-additive isometry invariant extension ļi
 of A to 2r, one has

 fi(A D E) = a A (E),

 for any Lebesgue measurable set E. In fact, many different types of such sets
 are shown to exist, some having appeared in the literature as examples of
 non-Lebesgue measurable sets. For instance, one of the classic examples of a
 non-measurable set is discussed by Haimos [6], and many of the sets in this
 paper are generalizations of this set. Another set is due to Sierpiński [16],
 which was shown by Hewitt and Stromberg [8] to satisfy A* {A fi J) > |A( J),
 for intervals J C R. Other results concerning some of these sets have been
 of the form A*(A H J) = A (J), and the reader is referred to Pu [13] and
 Simoson [19]. The notion of an a-shading will then be generalized to that of
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