Real Analysis Exchange Vol 16 (1990-91)

K. P. S. Bhaskara Rao, Indian Statistical Institute, Bangalore, India

R. M. Shortt, Wesleyan University, Middletown, Connecticut 06457

Separation of points by families of intervals

Let X be a separable metric space. It has been shown (see [1] or [3]) that the Borel structure on X has a minimal generator, i.e. there is a family $\mathscr F$ of subsets of X such that the σ -field $\sigma(\mathscr F)$ generated by $\mathscr F$ equals the Borel σ -field $\mathscr B(X)$, and such that $\sigma(\mathscr F) \neq \mathscr B(X)$ for any proper sub-collection $\mathscr F \subseteq \mathscr F$. Such minimal generators are necessarily countable, as follows from the well-known and easily proved

Lemma 1: Let (X, \mathcal{B}) be a measurable space with \mathcal{B} countably generated. If $\mathcal{F} \subseteq \mathcal{B}$ is such that $\sigma(\mathcal{F}) = \mathcal{B}$, then there is some countable $\mathcal{F}_0 \subseteq \mathcal{F}$ such that $\sigma(\mathcal{F}_0) = \mathcal{B}$.

In particular, the real line \mathbb{R} has a minimal Borel generator. In [1; p. 19], an argument was made attempting to show that no minimal generator for \mathbb{R} could be constructed using solely intervals. The underlying premise was that a family of intervals is a generator if and only if the set of corresponding interval end—points were dense in \mathbb{R} . As pointed out by \mathbb{M} . Filipczak [2], this premise is incorrect. Moreover, as we demonstrate, there is indeed a minimal generator for \mathbb{R} comprising only intervals.

Let $\mathcal F$ be a family of subsets of a set X. Points $x, y \in X$ are <u>separated</u> by $\mathcal F$ if there is some $F \in \mathcal F$ such that either

 $x \in F$ and $y \notin F$ or $y \in F$ and $x \notin F$.

Say that $\mathscr F$ is a minimal separator if $\mathscr F$ separates each pair of distinct points from X, but no proper sub-family $\mathscr F_0 \subseteq \mathscr F$ does.