INROADS Real Analysis Exchange Vol. 9 (1983-84)

Inga Libicka, Institute of Mathematics, University of Łódź 90-238 Łódź, Poland

On Generalized Cluster Sets

The paper consists of three parts. In the first we consider σ -ideals of subsets of the plane adjoint with some σ -ideal \mathcal{I} of subsets of the real line. The second part contains some theorems concerning σ -algebras of the form $(\mathcal{B} \wedge \mathcal{I})^2$, where \mathcal{E} is a σ -algebra of Borel sets. In the third part the facts from the two earlier parts are used to study generalized limit numbers of real function defined in the upper half-plane.

1. Let H denote the open upper half-plane above the real line R, S - a σ -algebra of subsets of R and S² - the smallest σ -algebra generated by sets A x B, where A \in S and B \in S. L(x, θ) is the halfline beginning at $x \in R$ in the direction θ , L(x, θ ,r) - the segment beginning at $x \in R$ in the direction θ having length r. For $x \in R$ let h_x be the real function defined in H such that $h_x(p) = r$ for $p \in H$, where r is the distance of p from x.

For any σ -ideal $\mathcal{T} \subset S$ and direction $\theta \in (0,\pi)$ we shall define the σ -ideal $\mathcal{T}^2(\theta)$ adjoint with \mathcal{T} in the direction θ :

 $\mathcal{J}^{2}(\theta) = \{ M \in S^{2} : \text{ there is a set } U \in \mathcal{J} \text{ such that} \\ h_{x}(L(x,\theta) \cap M) \in \mathcal{J} \text{ for each } x \in R - U \}$

273