Real Analysis Exchange Vol. 7 (1981-82)

Isaac H. Solomon, University of Wisconsin Center-Baraboo/Sauk County, 1006 Connie Rd. Box 320, Baraboo, Wisconsin 53913

SOME THEOREMS ON DINI DERIVATES

The relationships between the density of sets of points where the various Dini derivates of a function are nonnegative are studied.

Theorem 1: If f(x) is a real valued function of a real variable, λ any real number and $\{x : D_f(x) \ge \lambda\}$ is dense, then $\{x : D_f(x) \ge \lambda\}$ is dense.

<u>Proof</u>: Without loss of generality, assume $\lambda=0$. Let (a,b) be any interval. There exists x_1 in (a,b) such that $D_f(x_1) > -1$. Therefore, there is some $\delta_1 > 0$ such that for every t in $(x_1-\delta_1,x_1)$,

 $f(t) < f(x_1) + (x_1-t).$

Choose δ_1 < 1 and such that $x_1-\delta_1$ > a. There is x_2 in $(x_1-\delta_1,x_1)$ such that $D_f(x_2)$ > -1/2. Therefore, there is some δ_2 > 0 such that for every t in $(x_2-\delta_2,x_2)$,

 $f(t) < f(x_2) + (1/2)(x_2-t).$

Choose $\delta_2 < 1/2$ and such that $x_2 - \delta_2 > x_1 - \delta_1$.

Continuing in this manner we obtain a decreasing sequence of intervals $\{(x_n-\delta_n,x_n)\}$ such that $\delta_n<1/n$.