Zbigniew Grande^{*}, Mathematical Institute, Pedagogical University, Plac Słowiański 9, 65-069 Zielona Góra, Poland

ON STRONG QUASI-CONTINUITY

1 NOTATIONS:

 \mathcal{R} - the set of all reals;

N - the set of all positive integers;

 μ_e (μ) - the outer Lebesgue measure (the Lebesgue measure) in \mathcal{R} ;

 $d_u(A, x) = \limsup_{h \to 0} \frac{mu_e(A \cap (x-h, x+h))}{2h}$ - the upper density of A at x;

 $d_l(A, x) = \liminf_{h \to 0} \frac{\mu_e(A \cap (x-h, x+h))}{2h}$ - the lower density of A at x;

 $x \in \mathcal{R}$ is called a density point of a set A if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$;

 $\mathcal{T}_d = \{A \subset \mathcal{R}; A \text{ is measurable and every point } x \in A \text{ is a density point of } A\}$ denotes the density topology;

int(A) $(int_d(A))$ - the Euclidean interior (the interior in \mathcal{T}_d) of A;

cl(A) - the closure of A;

 $\mathcal{T}_{ae} = \{A \in \mathcal{T}_d; \mu(A - int(A)) = 0\}.$

2 DEFINITIONS:

A function $f : \mathcal{R} \longrightarrow \mathcal{R}$ is called quasi-continuous (in short q.c.) [cliquish (in short c.q.)] at a point x if for every open set U containing x and for every positive real η there is a nonempty open set $V \subset U$ such that $|f(t) - f(x)| < \eta$ for all points $t \in V$ [$osc_V f < \eta$].;

^{*}Supported by KBN Research Grant 1992-94, 2 1144 91 01.