RESEARCH ARTICLES Real Analysis Exchange Vol. 13 (1987-88)

Jan Jastrzebski, Instytut Matematyki, Uniwersytet Gdański, ul. Wita Stwosza 57, 80-952 Gdański, Poland.

MAXIMAL ADDITIVE FAMILIES FOR SOME CLASSES OF DARBOUX FUNCTIONS

Preliminaries. Let $C^+(f,x)$ and $C^-(f,x)$ denote the set of all right-side and left-side limit numbers of the function f at the point x. For any subset M of the plane \mathbb{R}^2 , cl(M) denotes the closure of M and card(M)denotes the cardinality of M. No distinction is made between a function and its graph.

In [2] Bruckner and Ceder described what it means for a real function to be Darboux at a point. We say that a function f is Darboux from the right-side [left-side] at a point x (we write $x \in D_+(f)$, $x \in D_-(f)$ respectively) if and only if

- 1° $f(x) \in C^+(f,x)$ [$f(x) \in C^-(f,x)$]; and
- 2° whenever $a, b \in C^+(f, x)$ $[a, b \in C^-(f, x)]$ and y is any point between a and b, then for every $\varepsilon > 0$ exists a point $\xi \in (x, x + \varepsilon)$ $[\xi \in (x - \varepsilon, x)]$ such that $f(\xi) = y$.

In [3] Cśaszár showed that a function is Darboux if and only if it is Darboux at each point.

By D^{C} we denote the class of Darboux functions whose upper and lower boundary functions are continuous. By D^{*} we denote the class of functions which take on every real value in every interval and by D^{**} we denote the class of functions which take on every real value c-times in every interval, where c denotes the cardinality of the continuum.

It is clear that $D^{**} \subset D^* \subset D^c$.

For a given family F of real functions let M(F) denote the class of all functions g such that $f \in F$ implies $f + g \in F$. This class is called the maximal additive family for F. It is known [1] that the family of continuous functions C is the maximal additive family for the class of Darboux Baire 1 functions DB_1 and the family of constant functions K is the maximal additive family for the class of Darboux functions D.