Geraldo Soares de Souza and G. Sampsom, Department of Foundations, Analysis and Topology, Division of Mathematics, Auburn University, Auburn, AL 36849

A FUNCTION IN THE DIRICHLET SPACE B SUCH THAT

ITS FOURIER SERIES DIVERGES ALMOST EVERYWHERE

An analytic function F on the disc belongs to the Dirichlet space B if $\|F\|_{B} = \int_{0}^{1} \int_{0}^{2\pi} |F'(re^{i\theta})| d\theta dr \langle \infty$. Notice that $B \notin H^{1} \notin L^{1}$, where H^{1} is the Hardy space of all analytic functions F on the disc so that $\|F\|_{H^{1}} = \sup_{O\langle r \langle 1 \rangle} \int_{0}^{2\pi} |F(re^{i\theta})| d\theta \langle \infty$, and L^{1} is the Lebesgue space of all integrable functions on $[0, 2\pi]$. The inclusion $H^{1} \notin L^{1}$ is taken in the sense of boundary values, that is, $F \in H^{1}$ implies $\lim_{r \to 0} \operatorname{Re} F(re^{i\theta}) \in L^{1}$.

Kolmogorov [Une serie de Fourier-Lebesgue divergente presque partout, Fund. Math. 4 (1923), 324-8] showed that there exists an f in L^1 such that its Fourier series diverges almost everywhere. Also, it was shown by Sunouchi [A Fourier series which belongs to the class H^1 diverges almost everywhere, Kodai Math. Sem. Rep. 1 (1953) 27-8], who modified an example of Hardy and Rogosinski [Fourier Series, Cambridge Tracts #38, 2nd Edition, 1949], that there is a function in H^1 with a divergent Fourier series. Therefore, a natural question to ask is: Do the functions in B have convergent Fourier series.

This question was asked by Professor Guido Weiss to the first named author.

In this lecture we answer this question negatively.