Zbigniew Grande, Tomasz Natkaniec and Ewa Strońska, Institute of Mathematics, Higher Pedagogical School, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

> LATTICES, ALGEBRAS AND BAIRE'S SYSTEMS GENERATED BY SOME FAMILIES OF FUNCTIONS

I. Preliminaries. Let us establish some of the terminology to be used. R denotes the real line. Let (X,T) be a topological space. A function $f:X \rightarrow R$ is said to be T-quasi-continuous at a point $x_0 \in X$ iff for every $\mathcal{E} > 0$ and for any neighbourhood $U \in T$ of the point x_0 there exists a T-open set V such that $0 \neq V \subset U$ and $|f(x) - f(x_0)| < \mathcal{E}$ for every $x \in V$, T-cliquish at $x_0 \in X$ iff for every $\mathcal{E} > 0$ and for any neighbourhood $U \in T$ of the point x_0 there exists a T-open set V such that $0 \neq V \subset U$ and $|f(x) - f(x_0)| < \mathcal{E}$ for every $x \in V$, T-cliquish at $x_0 \in X$ iff for every $\mathcal{E} > 0$ and for any neighbourhood $U \in T$ of the point x_0 there exists a T-open set V such that $0 \neq V \subset$ U and $|f(x) - f(x_1)| < \mathcal{E}$ for $x, x_1 \in V$.

A function $f:X \rightarrow R$ is T-quasi-continuous (T-cliquish) on X iff f is T-quasi-continuous (T-cliquish) at every point of X.

Let $X = R^m$.We shall use the following differentiation basis. For every $k \in N$ (N denotes the set of all positive integers) let P_k be the family of all m-dimensional intervals of the form

 $\langle i_1^{-1}/2^k, i_1/2^k \rangle \times \cdots \times \langle i_m^{-1}/2^k, i_m/2^k \rangle$ where $i_1, i_2, \cdots, i_m = 0, -1, -2, \cdots$.