Real Analysis Exchange Vol. 12 (1986-87)

Michael J. Evans, Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205

Paul D. Humke, Department of Mathematics, St. Olaf College, Northfield, Minnesota 55057

L-POINTS OF TYPICAL FUNCTIONS IN THE ZAHORSKI CLASSES

Functions considered in this paper will belong to the space \mathfrak{A}^1 , the space of Baire class one functions on the interval [0,1] equipped with the metric of uniform convergence. Ever since Lebesgue [6], it has been known that any function in the space of bounded Baire class one functions on [0,1], $\mathfrak{b}\mathfrak{A}^1$, is the derivative of its indefinite integral except at a set of points which is both of measure zero and of first category. As in [4], for $f \in \mathfrak{A}^1$, we call x an L-point of f if $\lim_{h\to 0} \frac{1}{h} f(x+t) dt = f(x)$, and we let

$$N(f) = \{x \in [0,1]: \lim_{h \to 0} \frac{1}{h} \int_{0}^{h} f(x+t)dt \text{ does not exist}\}.$$

Although the set of L-points for any function in $b\mathbb{B}^1$ is large in terms of measure and category, it was shown in [5] that for the typical (in the sense of category) function $f \in b\mathbb{B}^1$ the set N(f) fails to be σ -porous. More specifically, it was shown in that paper that if $N = \{f \in \mathbb{B}^1 : N(f) \text{ is } \sigma$ -porous), and if \mathcal{F} is any of the spaces \mathbb{B}^1 , \mathbb{B}^1 , \mathbb{B}^1 , \mathbb{B}^1 (the Baire one Darboux functions), or \mathbb{B}^1 , then $N \cap \mathcal{F}$ is closed and nowhere dense in \mathcal{F} .

Thus, using Zahorski's [11] notation, we have the situation that the typical function in the space $bM_0 = bM_1 = bB^1 D$ has a non-o-porous set of