Lee Peng Yee, Department of Mathematics, National University of Singapore, Kent Ridge, Republic of Singapore 0511.

CONVERGENCE THEOREMS IN INTEGRATION THEORY

We shall define the Henstock integral [5, 6, 14], describe three convergence theorems [9, 11] and sketch one of the proofs.

A function f is said to be Henstock integrable to A on [a, b] if for every $\varepsilon > 0$ there is a function $\delta(\xi) > 0$ such that for any division (called δ -fine) given by

 $a = x_0 < x_1 < \dots < x_n = b$ and $\xi_1, \xi_2, \dots, \xi_n$

satisfying $\xi_i - \delta(\xi_i) < x_{i-1} < \xi_i < x_i < \xi_i + \delta(\xi_i)$ for i = 1, 2, ..., n, we have

$$\left|\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) - A\right| < \varepsilon.$$

It is well-known that the Henstock integral is equivalent to the Denjoy integral [5, 7, 17] and to the Perron integral [5, 15, 17]. The Henstock integral is also known as the Kurzweil integral [8].

Next, we define major and minor functions and functions which are ACG_{*}. A function H is said to be a major function of a function f in [a, b] if

$$-\infty \neq DH(x) > f(x)$$
 for every x

where <u>D</u> denotes the lower derivative. A function G is said to be a minor function of f in [a, b] if -G is a major function of -f in [a, b].

A function F is said to be $AC_{\star}(X)$ if for every $\varepsilon > 0$ there is $\eta > 0$ such that for every finite and infinite sequence of non-overlapping intervals