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 On Absolute Peano Derivatives

 1 . Introduction

 In the recent survey article on Peano derivatives [1] , M. J. Evans and

 C. E. Weil have stated that it is not known whether Laczkovich's absolute

 Peano derivatives have the -M,M property, the Zahorski property, or property

 Z. With some further observations on the generalized Peano derivatives

 studied by the author [3], we show that, in particular, the absolute Peano

 derivatives do have those properties.

 Terminology and notations are those used in the survey article [1]

 unless otherwise stated. The letter n will be a positive integer through-

 out the paper.

 Now, we review the study in [3] . The (ordinary) Peano derivative

 of f at t is denoted as f^(t), the same as that in [1] except that the
 parentheses are put around n. The generalized n*^ Peano derivative of f

 at t as defined in [3], denoted as f^ft) with brackets around n, is just
 th f |ļ

 the ordinary (n+k) Peano derivative "here g is a k primitive

 of f in a neighborhood of t, assuming that f is continuous in that neighbor-

 hood and that there exist such k and g for which g, (t) exists. Note
 (n+Kj

 that ^£nļCt)> if i* exists, is unambiguously defined since it is independ-
 ent of the k and g above. Also note that it might happen that one of

 and exists while the other does not exist. However, if

 f is assumed to be continuous in a whole neighborhood of t, then the

 existence of f^(t) implies that f ^ (t) exists and equals f^ft). In

 particular, if f^ exists and f^ is finite in an interval, then f^j

 exists and equals f^ in that interval. The above statement fails to hold
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