Real Analysis Exchange Vol. 8 (1982-83)

G. Petruska, Department I of Analysis, Eotovs Loránd University, Budapest, Muzeum krt. 6-8, Hungary H-1088

> An Extension of the Darboux Property and Some Typical Properties of Baire-1 Functions

We denote by \mathcal{A} , λ , \mathcal{DB}^1 , \mathcal{B}^1 the set of approximately continuous functions, derivatives, Darboux Baire 1 functions and Baire 1 functions all defined on [0,1]. We state our results for the corresponding bounded classes \mathbf{bA} , $\mathbf{b}\Delta$, \mathbf{bDB}^1 , \mathbf{bB}^1 ; all these form Banach spaces with the norm $\|\mathbf{f}\| = \sup\{\mathbf{f}\}$ and a typical property is understood as such that holds for a residual subset in one of these spaces. The results we list here were proved in [1], [2], [3]. In the chart below we deal with the range $R_{\mathbf{f}}$, the set $A_{\mathbf{f}}$ of points of approximate continuity, the set $C_{\mathbf{f}}$ of continuity points, the level sets $\mathbf{f}^{-1}(\mathbf{y})$ the "reduced" ranges $f(A_{\mathbf{f}})$, $f(C_{\mathbf{f}})$ and "cl" stands for closure. μ denotes arbitrary finite Borel measure on [0,1], $\mu_{\mathbf{c}}$ is continuous Borel measure and λ denotes Lebesgue's measure.

For instance, assertion 53 is to be read as follows: for any given finite Borel measure μ the functions $f \in DB^1$ satisfying $\mu(cl f(C_f)) = 0$ form a residual subset in bDB^1 .

62