Real Analysis Exchange Vol. 8 (1982-83)

V. Totik, Jószef Attila Tudományegyetem, Bolyai Intézet, Aradi Vértanúk Tere 1, Szeged, POLAND.

On a Problem Concerning LP Moduli of Smoothness

THEOREM. Let (a,b) be a finite or infinite interval, $\beta \ge 1$ an integer, a > 0 and $1 \le p < \infty$, $f \in L^p(a,b)$. If

(1)
$$\|\Delta_{t_n}^{\beta} f\|_{L^p(a,b-\beta t_n)} \leq t_n^{\alpha}$$

for a sequence {t_n}-> 0+0 satisfying

(2)
$$\{t_n/t_{n+1}\} = 0(1)$$
 $(n-)^{\infty}$, then

(3)
$$\|\Delta_{\mathbf{h}}^{\beta}f\|_{L^{p}(a,b-\beta\mathbf{h})} = O(\mathbf{h}^{\alpha})$$
 (h->0+0).

Bere,

$$\Delta_{\mathbf{h}}^{\beta} \mathbf{f}(\mathbf{x}) = \sum_{n=1}^{\beta} (-1)^{\beta+1} {\beta \choose i} \mathbf{f}(\mathbf{x}+i\mathbf{h}).$$

The analogous result in $C_{2\pi}$ was proved by De Vore for $\beta=2$, and he raised the question if the same is true in the LP norm. Freud verified this in the case p=2 and Ditzian for every $p\geq 1$. Freud also showed that (2) is necessary for the implication (1)=>(3) when $\alpha<\beta$ and the problem of the sufficiency of (2) for every $\beta\geq 1$ was posed by Ditzian. Boman solved this problem in a very general setting. Since Boman's approach is rather abstract and heavily uses the translation invariance of $L^p(-\infty,\infty)$, it seems worthwhile to give a direct proof which also applies to the finite interval.