Real Analysis Exchange Vol. 5 (1979-80)

A.K. Layek, Multipurpose School-Mathematics Section, Akbar Road, Durgapur-713204, Burdwan, West Bengal, India

Intersections of Qualitative Cluster Sets

§1.

Let H denote the open upper half plane above the real line R and let z and x denote points in H and R respectively. Let \overline{A} denote the closure of the set A. For two directions θ_1 and θ_2 , $0 < \theta_1 < \theta_2 < \pi$, we write

$$\sigma_{\theta_1\theta_2} = \{z: z \in H; \theta_1 < \arg z < \theta_2\}$$

Then $\sigma_{A_1 \theta_2}$ is a sector in H with vertex at the origin. By $\sigma_{A_1 \theta_2}(x)$ we denote the translate of $\sigma_{A_1 \theta_2}$ which is obtained by taking the origin at x. If there is no confusion then we simply write σ and $\sigma(x)$ instead of $\sigma_{\theta_1 \theta_2}^{and} \sigma_{\theta_1 \theta_2}(x)$. For a fixed $x \in \mathbb{R}$, fixed $\theta \in (0, \pi)$, and r > 0 we write $L_{A}(x) = \{z: z \in H; \arg(z-x) = A\},$ $K(x,r) = \{z: z \in H; |z - x| < r\},$ $\sigma(x,r) = \sigma(x) \cap K(x,r),$ and $L_{A}(x,r) = L_{A}(x) \cap K(x,r)$.