Real Analysis Exchange Vol. 18(1), 1992/93, pp. 241-248

Z. Grande, Instytut Matematyki WSP, ul. Arciszewskiego 22b, 76–200 Słupsk, Poland

T. Natkaniec, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Byd-goszcz, Poland

On Some Topologies of O'Malley's Type on the Plane

Let (X, \mathcal{T}) be a topological space. A real function f defined on X is said to be

- \mathcal{T} -quasi-continuous at a point $x_0 \in X$ iff for every $\varepsilon > 0$ and for any neighbourhood $U \in \mathcal{T}$ of the point x_0 there exists $V \in \mathcal{T}$ such that $\emptyset \neq V \subset U$ and $|f(x) f(x_0)| < \varepsilon$ for every $x \in V$,
- \mathcal{T} -cliquish at $x_0 \in X$ iff for every $\varepsilon > 0$ and for any neighbourhood $U \in \mathcal{T}$ of the point x_0 there exists $V \in \mathcal{T}$ such that $\emptyset \neq V \subset U$ and $osc_V f < \varepsilon$.

If \mathcal{T} is the Euclidean topology on \mathbb{R}^n , we will write "quasi-continuous", "cliquish" instead of " \mathcal{T} -quasi-continuous" and " \mathcal{T} -cliquish".

In the present paper we study the families of \mathcal{T} -quasi-continuous functions and \mathcal{T} -cliquish functions defined on \mathbb{R}^2 with some topologies of density type.

1. S. Kempisty proved in [8] that if every x-section of $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f_x(t) = f(x,t)$ and every y-section of f, $f^y(t) = f(t,y)$ is quasi-continuous then f is quasi-continuous, too. Note that the analogous theorem is not true for density topology d (see e.g. [2], p. 20, for definitions).

Example 1 Under Martin's Axiom there exists a function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that

- 1. all f_x and f^y sections of f are d-quasi-continuous,
- 2. f is not $d \times d$ -cliquish (thus f is not $d \times d$ -quasi-continuous),
- 3. f is not measurable [6]

The following Lemma is proved in [5], p. 13.

Received by the editors December 3, 1991