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 Products of Darboux Functions

 Let us establish some terminology to be used. R denotes the set of all reals.
 I denotes a non-degenerate closed interval. If A is a planar set, we denote its
 x-projection by dom(>l) and ^/-projection by rng(>l).

 We shall consider real functions defined on a real interval. No distinction is

 made between a function and its graph. The symbols C~(/, x) and C+(/, x)
 denote the left and right cluster sets of / at the point x. The symbol C(f)
 denotes the set of all continuity points of /. The notation [/ > 0] means the set
 {x : f(x) > 0}. Likewise for [/ = 0], [/ ^ 0], etc. For subsets A, B C R let
 V*(A , B) denote the class of all functions / : A - ► B such that cl Af~l(y) = A
 for each y G B. Let us remark that if A is an Fa set and A is c dense-in-itself,
 then the class V*(AyR) contains Baire 2 functions (see [2]).

 The function / is said to be Darboux if /(C) is connected whenever C is a
 connected subset of the domain of /. If each open set containing / also contains
 a continuous function with the same domain as /, then / is almost continuous
 [2]. It is clear that if / : I - ► R is almost continuous, then / is connected and,
 therefore, it has the Darboux property. Moreover, if / meets each closed subset
 F of I x R with int(dom(F)) ^ 0, then / is almost continuous [2].

 We shall use the following set-theoretical assumption.

 A(c) - the union of less than 2^ many first category subsets of R is of the first
 category again.

 Note that this statement is a consequence of Martin's Axiom and therefore also
 the Continuum Hypothesis (see e.g. [2]).

 It is well known that each real- valued function defined on a real interval can

 be expressed as a sum of two Darboux functions [2]. This fact was improved by
 Fast in the following way: if T is a collection of c-many real functions then there
 exists a function g such that f + g is Darboux for each / G T [2]. In 1967, Mišik
 proved that for each countable family T of Baire a functions (where a > 1)
 there exists a Baire a function g such that / + g has the Darboux property
 for every / G T [2]. In 1984, Pu and Pu proved the analogous result for finite
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