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 Metric Space of Metrics Defined on a Given Set

 1. Introduction

 Let X be a non- void set. Denote by M = M( X) the set of all metrics on X.
 We can introduce a metric d* on M as follows:

 If d,ď £ M then

 d*(d,ď) = min {1, sup 'd{x, y) - ď(x, y)|}.
 x,y€X

 First of all recall some basic definitions and notations.

 The symbol tQ(a > 0) stands for a trivial metric on X i.e. ťa(x,x) = 0
 for every x G X and tQ(x,y) = a for x ^ y, x, y G X. Furthermore if d G M
 and e > 0, denote by K(d, e) = {d' G M : d*(d,ď) < e) (a ball in M ) and
 K(d, e) = {d' e M : d* (d, d') < e] (a closed ball in M).

 Denote by 'B' the cardinality of the set B and by V(B) the power set of B.
 If 'X' = 1, then obviously 'M(X)' = 1. Therefore in the following we shall

 always assume that 'X' > 2.
 Denote by No and c the cardinality of the set of all positive integers N and

 the set of all real numbers IR, respectively.
 If M' C M , then M' is considered as a metric space with the metric

 (a metric subspace of M).

 2. Lemmas

 In our further considerations some lemmas will take an important place. It
 is easy to check, that the space is not complete. For example, the
 sequence {/ of elements of M is fundamental, nevertheless has no limit in
 M. In connection with this we mention some subspaces of A4, which are already
 complete. Suppose a > 0 and put
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