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Closure of Darboux Graphs

What is the nicest class of functions with the property that the graph of any
Darboux function would have the same closure as some member of this class? In
1974, Hugh Miller [6] showed that the graph of any Darboux function f : I — I,
where I = [0, 1], has the same closure in I? as the graph of some connectivity
function ¢ : I — I. Using an analogous transfinite induction argument, he
improved this result to obtain that f = h for some almost continuous function
h : I — I (unpublished). In 1990, at the Seventh Annual Auburn Miniconference
on Real Analysis, Ken Kellum asked whether the above results can be generalized
so that the function g in Miller’s theorem can be chosen to be a connectivity
function extendable to a connectivity function from I? into I. In this note,
we use another technique like in [4] and [3] to show the answer is yes. To
illustrate that Miller’s result does not generalize to 12, Kellum gave an example
of a Darboux function f : I? — I? for which f = h for no almost continuous
function h : I2 — I2. We end with an equivalence between the uniform closure
of the class of Darboux functions and the closure of Darboux graphs.

Let f : X — Y. Then f is Darboux (connectivity) if f(C) (the graph of
fIC) is connected for every connected subset C of X. We say f is peripherally
continuous at z if for each open neighborhood U of z and V of f(z), there is
an open neighborhood W of z in U such that f(bd(W))V. We say f is almost
continuous if each open neighborhood of the graph of f in X x Y contains the
graph of a continuous function g : X — Y. A connectivity function f : I — I is
said to be extendable if there is a connectivity function g : 12 — I such that for
all z € I, g(x,0) = f(z). For functions from I into I, we have:

extendable = almost continuous = connectivity = Darboux

where the first arrow is from [8, Cor. 1, Prop. 2] and the second is from [8, Cor.,
p. 261]. But for functions from I™ into I™, n > 2, we have:

peripherally continuous <= connectivity == almost continuous

where <= is from [5, Th. 1] or [9, Cor.] and [8, Th. 4] and = is from [8, Cor.
1].
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