Real Analysis Exchange Vol. 18(1), 1992/93, pp. 82-86

Hüseyin Bor, Department of Mathematics, Erciyes University, Kayseri 38039, Turkey, Mailing Address: P.K. 213, Kayseri 38002, Turkey

A Note on Absolute Nörlund Summability Factors

Let $\sum a_n$ be an infinite series with sequence of partial sums (s_n) . By δ_n and t_n we denote the *n*th (C, 1) means of the sequences (s_n) and (na_n) , respectively. The series $\sum a_n$ is said to be summable $|C, 1|_k$, $k \ge 1$, if (see [3])

$$\sum_{n=1}^{\infty} n^{k-1} |\delta_n - \delta_{n-1}|^k < \infty.$$

$$\tag{1}$$

Since $t_n = n(\delta_n - \delta_{n-1})$ (see [4]), condition (1) can also be written as

$$\sum_{n=1}^{\infty} \frac{1}{n} |t_n|^k < \infty.$$
⁽²⁾

Let (p_n) be a sequence of constants, real or complex, and let us write

$$P_n = p_0 + p_1 + p_2 + \dots + p_n \neq 0, \quad (n \ge 0).$$
(3)

The sequence-to-sequence transformation

$$z_n = \frac{1}{P_n} \sum_{v=0}^n p_{n-v} s_v$$
 (4)

defines the sequence (z_n) of the Nörlund means of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|N, p_n|$ if (see [5])

$$\sum_{n=1}^{\infty} |z_n - z_{n-1}| < \infty, \tag{5}$$

Key Words: Absolute summability, strong summability, summability factors, Nörlund methods.

Mathematical Reviews subject classification: 40D15, 40F05, 40G05 Received by the editors September 4, 1991