RESEARCH ARTICLES

Real Analysis Exchange Vol. 18(1), 1992/93, pp. 43-51

S. Hernández, Departamento de Análisis Matemático, Universidad de Valencia, Burjassot, Valencia, Spain

Positive Linear Functionals on Spaces of Continuous Functions

1. Introduction

In [9] Hausdorff defines a complete ordinary function system Ω on a space X as a linear lattice of continuous functions containing the constants which is uniformly closed, which is a ring, and which is closed under inversion, i.e., if $f \in \Omega$ and f > 0, then $1/f \in \Omega$ (here f > 0 means that f(x) > 0 for all $x \in X$ and $f \ge 0$ means that $f(x) \ge 0$ for all $x \in X$). In particular, each space C(X) of all continuous functions on a topological space is a complete ordinary function system (abbreviated cofs). These systems of functions have been studied by many other authors and we shall refer to some of them in this paper.

If Ω is a cofs, then the bounded functions in Ω form a real Banach algebra under the uniform norm that we shall denote by Ω^* . A representation by measures of the dual space of this Banach space has been obtained by Alexandroff in [1].

The aim of this paper is to represent all positive functionals defined on a cofs Ω by means of integrals. This representation was given by Hewitt in [12], Theorems 13 and 18, when Ω is C(X) for X a realcompact space. Cater in [3] gives a representation of all positive linear functionals defined on B(X), the set of all Baire functions on a realcompact space X, as finite sums of Riesz Homomorphisms. Finally, Tucker in [18] considers a cofs Ω and obtains a representation of all positive linear functionals defined on $B_1(\Omega)$, the set of all pointwise limits of sequences in Ω , as sums of a finite number of Riesz homomorphisms.

2. Preliminaries

 \mathbb{N} (resp. \mathbb{R}, \mathbb{Q}) will denote the set of all natural numbers (resp. real numbers, rational numbers).

Mathematical Reviews subject classification: Primary 54C35; 54D60; 28C15; 46E05. Received by the editors May 15, 1990