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 Totalization: Newton's Problem and Fourier's
 Problem

 We are concerned with the following two problems:

 Problem 1 (Newton's Problem) Given a derivative , how can we recover its
 primitive?

 Problem 2 (Fourier's Problem) Given the limit of an everywhere convergent
 trigonometric series, how can we recover the series? The two problems were

 named by Denjoy, who solved both and considered the solutions to be his two
 greatest accomplishments. Simpler solutions were discovered by others, and
 these were harshly criticized by Denjoy for not being "constructive."

 The two problems are closely related. Because of theorems of Riemann and
 Rajchman-Zygmund, respectively, the second problem can be solved by solving
 either of the following:

 Problem 2a Given the Schwarz derivative of a continuous function , how can
 we recover the function?

 Problem 2b Given the approximate symmetric derivative of a measurable func-
 tion, how can we recover (almost everywhere) the function?

 There is also a natural intermediate problem:

 Problem l| Given the symmetric derivative of a continuous function, how can
 we recover the primitive?

 Denjoy 's solution to Problem 1 is well known and not too difficult. He calls

 the method "totalization." His solution to Problem l| is much more complicated
 and involves a finer analysis of perfect sets. Doubts have been raised as to
 whether this "symmetric totalization" is really constructive. His solution to
 Problem 2 follows the path 2a and is extremely difficult and confusing.

 The goal is to provide new solutions to these problems based upon the
 "Henstock-Kurzweil" or "Riemann-complete" method. In order to avoid crit-
 icism of being "non-constructive" we must first decide what this means. We
 therefore examine Denjoy 's original totalization procedure as it applies to Prob-
 lem 1. It immediately becomes apparent how the same process works for invert-
 ing approximate derivatives and why it runs into trouble for symmetric deriva-
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