Hans P. Heinig, Department of Mathematics and Statistics, McMaster University, Hamilton, L8S 4K1, Canada

Weighted Inequalities in Function Spaces

The problem of characterizing non-negative locally integrable (weight) functions u and v on \mathbb{R}^+ , for which Hardy's inequality

$$\left\{ \int_0^\infty u(x) \left[\int_0^x f(t)dt \right]^q dx \right\}^{\frac{1}{q}} \le C \left\{ \int_0^\infty v(x) f(x)^p dx \right\}^{\frac{1}{p}}, 0 < p, q < \infty, \quad (1)$$

holds for all non-negative $f \in L_v^p$ has been completely solved. The formulation for the discrete version of this result in the index range $1 < p, q < \infty$ is

Theorem 1 ([1],[4]) Suppose $1 < p, q < \infty$ and $\{u_k\}_{k \in \mathbb{N}}$, $\{v_k\}_{k \in \mathbb{N}}$ are sequences such that $u_k \ge 0$, $v_k > 0$, $k \in \mathbb{N}$. Then there exists a constant B > 0, such that

$$\left\{ \sum_{n \in \mathbb{N}} u_n \left[\sum_{k=1}^n a_k \right]^q \right\}^{\frac{1}{q}} \le B \left\{ \sum_{n \in \mathbb{N}} v_n a_n^p \right\}^{\frac{1}{p}} \tag{2}$$

holds for all non-negative sequences $\{a_k\} \in \ell^p_{\{v_n\}}$, if and only if

(i) in case 1

$$B_1 = \sup_{m \in \mathbb{N}} \left\{ \sum_{n=m}^{\infty} u_n \right\}^{\frac{1}{q}} \left\{ \sum_{n=1}^{m} v_n^{1-p'} \right\}^{\frac{1}{p'}} < \infty$$

(ii) in case $1 < q < p < \infty$

$$B_2 = \left\{ \sum_{m \in \mathbb{N}} \left[\sum_{n=m}^{\infty} u_n \right]^{\frac{r}{q}} \left[\sum_{n=1}^{m} v_n^{1-p'} \right]^{\frac{r}{q'}} v_m^{1-p'} \right\}^{\frac{1}{r}} < \infty,$$

where $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$ and p', q' are the conjugate indices of p and q, respectively.

In this talk we discuss weight characterizations of inequalities of the form (1) and (2), where the weighted Lebesgue spaces are replaced by more general