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 Generalized Lebesgue Points *

 Let / be Lebesgue integrable on [- tt, 7t] and let ļf-H-ļCnLii0* cosnť-f sinnť),
 be the Fourier series of /. A well known result of Lebesgue, states that if x is a
 Lebesgue point of /, then

 lim an(x) = /(*), (*)
 TI-+00

 where we adopt the usual notation <rn(x) = ? an(j s0(x) =
 = ļf- + YlkLi (a* cosbt + sin Arť), m = 1,2

 summarized here we prove that if / is Denjoy-Perron integrable on [- 7r, tt], and
 if x is a generalized Lebesgue point of /, then (*) holds. Since it is shown that
 a Lebesgue point of a Lebesgue integrable function is a generalized Lebesgue
 point this result gives a generalization of the classical result. Prior to giving a
 precise statement of the main result, we list some background results.

 A well-known result of Féjer states that if / is continuous at x, then its
 Fourier series is (C, l)-summable at x to f(x). Over the years this continu-
 ity condition has been relaxed. Lebesgue showed that if / is Lebesgue inte-
 grable, then its Fourier series is (C, l)-summable to f(x) at any point where
 lim/^o % fx+k'f(x) ~ /(0M* = 0, ie' the full measure set of Lebesgue
 points of /. Fatou showed that if all we are concerned with is A-summability,
 then lim/j-o f*+h(f(x) - f(t))dt = 0, will do. These are called points of C-
 continuity. What happens if the function is only D* -integrable? There is a
 theorem of Marcinkiewicz quoted in Celidze & Džvaršeīšvili as: If a function is
 £>-integrable, then it is (C, l)-summable at all points of C-continuity. This seems
 to be a misquote since then we could extend Fatou's result to (C, l)-summability.
 There is an example in Zygmund of a function whose differentiated series is not
 (C, l)-summable at a point where it has a derivative; however it is not clear
 that this function is ACG*i or even ACG. A reading of the original paper of
 Marcinkiewicz seems to suggest the correct result is: A D-integrable function is
 (C, l)-summable at almost all points of C-continuity. In the case of Lebesgue
 integrable functions this implies a weaker form of Lebesgue's result.

 •This talk was presented by Peter Bullen.
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