HOW ENUMERATION REDUCIBILITY YIELDS EXTENDED HARRINGTON NON-SPLITTING

MARIYA I. SOSKOVA ${ }^{\dagger}$ AND S. BARRY COOPER ${ }^{\ddagger}$

§1. Introduction. Sacks [16] showed that every computably enumerable (c.e.) degree $>\boldsymbol{0}$ has a c.e. splitting. Hence, relativising, every c.e. degree has a Δ_{2} splitting above each proper predecessor (by 'splitting' we understand 'nontrivial splitting'). Arslanov [1] showed that $\boldsymbol{0}^{\prime}$ has a d.c.e. splitting above each c.e. $\boldsymbol{a}<\boldsymbol{0}^{\prime}$. On the other hand, Lachlan [11] proved the existence of a c.e. $\boldsymbol{a}>\boldsymbol{0}$ which has no c.e. splitting above some proper c.e. predecessor, and Harrington [10] showed that one could take $\boldsymbol{a}=\boldsymbol{\theta}^{\prime}$. Splitting and nonsplitting techniques have had a number of consequences for definability and elementary equivalence in the degrees below $\boldsymbol{0}^{\prime}$.
Heterogeneous splittings are best considered in the context of cupping and noncupping. Posner and Robinson [15] showed that every nonzero Δ_{2} degree can be nontrivially cupped to $\boldsymbol{0}^{\prime}$, and Arslanov [1] showed that every c.e. degree $>\boldsymbol{0}$ can be d.c.e. cupped to $\boldsymbol{\theta}^{\prime}$ (and hence since every d.c.e., or even n-c.e., degree has a nonzero c.e. predecessor, every n -c.e. degree $>\boldsymbol{0}$ is d.c.e. cuppable). Cooper [4] and Yates (see Miller [13]) showed the existence of degrees noncuppable in the c.e. degrees. Moreover, the search for relative cupping results was drastically limited by Cooper [5], and Slaman and Steel [17] (see also Downey [9]), who showed that there is a nonzero c.e. degree \boldsymbol{a} below which even Δ_{2} cupping of c.e. degrees fails.

We prove below what appears to be the strongest possible of such nonsplitting and noncupping results.
Theorem 1.1. There exists a computably enumerable degree $\boldsymbol{a}<\boldsymbol{0}^{\prime}$ such that there exists no nontrivial cuppings of c.e. degrees above \boldsymbol{a} in the Δ_{2} degrees above \boldsymbol{a}.

In fact, if we consider the extended structure of the enumeration degrees, Theorem 1.1 is a corollary of the even stronger result:

Theorem 1.2. There exists a Π_{1} e-degree $\boldsymbol{a}<\boldsymbol{0}_{e}^{\prime}$ such that there exist no nontrivial cuppings of Π_{1} e-degrees above \boldsymbol{a} in the $\Sigma_{2} e$-degrees above \boldsymbol{a}.

This would appear to be the first example of a structural feature of the Turing degrees obtained via a proof in the wider context of the enumeration degrees (rather than the other way round).

[^0]
[^0]: Received March 5, 2007.
 ${ }^{\dagger}$ The author was partially supported by the Marie Curie Early Training Site MATHLOGAPS (MEST-CT-2004-504029).
 ${ }^{\ddagger}$ The author was supported by EPSRC grant No. GR /S28730/01, and by the NSFC Grand International Joint Project, No. 60310213, New Directions in the Theory and Applications of Models of Computation.

