HOW ENUMERATION REDUCIBILITY YIELDS EXTENDED HARRINGTON NON-SPLITTING

MARIYA I. SOSKOVA[†] AND S. BARRY COOPER[‡]

§1. Introduction. Sacks [16] showed that every computably enumerable (c.e.) degree > θ has a c.e. splitting. Hence, relativising, every c.e. degree has a Δ_2 splitting above each proper predecessor (by 'splitting' we understand 'nontrivial splitting'). Arslanov [1] showed that θ' has a d.c.e. splitting above each c.e. $a < \theta'$. On the other hand, Lachlan [11] proved the existence of a c.e. $a > \theta$ which has no c.e. splitting above some proper c.e. predecessor, and Harrington [10] showed that one could take $a = \theta'$. Splitting and nonsplitting techniques have had a number of consequences for definability and elementary equivalence in the degrees below θ' .

Heterogeneous splittings are best considered in the context of cupping and noncupping. Posner and Robinson [15] showed that every nonzero Δ_2 degree can be nontrivially cupped to θ' , and Arslanov [1] showed that every c.e. degree > θ can be d.c.e. cupped to θ' (and hence since every d.c.e., or even n-c.e., degree has a nonzero c.e. predecessor, every n-c.e. degree > θ is d.c.e. cuppable). Cooper [4] and Yates (see Miller [13]) showed the existence of degrees noncuppable in the c.e. degrees. Moreover, the search for relative cupping results was drastically limited by Cooper [5], and Slaman and Steel [17] (see also Downey [9]), who showed that there is a nonzero c.e. degree *a* below which even Δ_2 cupping of c.e. degrees fails.

We prove below what appears to be the strongest possible of such nonsplitting and noncupping results.

THEOREM 1.1. There exists a computably enumerable degree a < 0' such that there exists no nontrivial cuppings of c.e. degrees above a in the Δ_2 degrees above a.

In fact, if we consider the extended structure of the enumeration degrees, Theorem 1.1 is a corollary of the even stronger result:

THEOREM 1.2. There exists a Π_1 e-degree $a < \theta'_e$ such that there exist no nontrivial cuppings of Π_1 e-degrees above a in the Σ_2 e-degrees above a.

This would appear to be the first example of a structural feature of the Turing degrees obtained via a proof in the wider context of the enumeration degrees (rather than the other way round).

© 2008, Association for Symbolic Logic 0022-4812/08/7302-0016/\$3.20

Received March 5, 2007.

[†]The author was partially supported by the Marie Curie Early Training Site MATHLOGAPS (MEST-CT-2004-504029).

[‡]The author was supported by EPSRC grant No. GR /S28730/01, and by the NSFC Grand International Joint Project, No. 60310213, *New Directions in the Theory and Applications of Models of Computation.*