THE JOURNAL OF SYMBOLIC LOGIC Volume 73, Number 1, March 2008

MAXIMAL IRREDUNDANCE AND MAXIMAL IDEAL INDEPENDENCE IN BOOLEAN ALGEBRAS

J. DONALD MONK

Introduction. Recall that a subset X of an algebra A is *irredundant* iff $x \notin \langle X \setminus \{x\} \rangle$ for all $x \in X$, where $\langle X \setminus \{x\} \rangle$ is the subalgebra generated by $X \setminus \{x\}$. By Zorn's lemma there is always a maximal irredundant set in an algebra. This gives rise to a natural cardinal function $\operatorname{Irr}_{mm}(A) = \min\{|X|: X \text{ is a maximal irredundant subset of } A\}$. The first half of this article is devoted to proving that there is an atomless Boolean algebra A of size 2^{ω} for which $\operatorname{Irr}_{mm}(A) = \omega$.

A subset X of a BA A is *ideal independent* iff $x \notin \langle X \setminus \{x\} \rangle^{id}$ for all $x \in X$, where $\langle X \setminus \{x\} \rangle^{id}$ is the ideal generated by $X \setminus \{x\}$. Again, by Zorn's lemma there is always a maximal ideal independent subset of any Boolean algebra. We then consider two associated functions. A spectrum function

 $s_{\text{spect}}(A) = \{ |X| : X \text{ is a maximal ideal independent subset of } A \}$

and the least element of this set, $s_{mm}(A)$. We show that many sets of infinite cardinals can appear as $s_{spect}(A)$. The relationship of s_{mm} to similar "continuum cardinals" is investigated. It is shown that it is relatively consistent that $s_{mm}(\mathfrak{P}(\omega)/fin) < 2^{\omega}$.

We use the letter *s* here because of the relationship of ideal independence with the well-known cardinal invariant *spread*; see Monk [5]. Namely, $\sup\{|X|: X \text{ is ideal independent in } A\}$ is the same as the spread of the Stone space Ult(A); the spread of a topological space X is the supremum of cardinalities of discrete subspaces.

NOTATION. Our set-theoretical notation is standard, with some possible exceptions, as follows. limord is the class of all limit ordinals, and reg is the class of all regular cardinals. If α and β are ordinals, then $[\alpha, \beta]_{card}$ is the collection of all cardinals κ such that $\alpha \leq \kappa \leq \beta$; similarly $[\alpha, \beta]_{reg}$ for the collection of all regular cardinals in this interval; and similarly for other intervals (half open, rays, etc.).

We follow Koppelberg [2] for Boolean algebraic notation, and Monk [5] for more specialized notation concerning cardinal functions on BAs. Fr(κ) is the free BA on κ generators. \overline{A} is the completion of A. In several places we use the following construction. Let $\langle A_i : i \in I \rangle$ be a system of BAs, with I infinite. The *weak product* $\prod_{i \in I}^{w} A_i$ consists of all members x of the full product such that one of the two sets

$$\{i \in I : x_i \neq 0\}$$
 or $\{i \in I : x_i \neq 1\}$

© 2008, Association for Symbolic Logic 0022-4812/08/7301-0012/\$2.50

Received February 3, 2007.