THE JOURNAL OF SYMBOLIC LOGIC Volume 72, Number 3, Sept. 2007

CORRIGENDUM TO: "TRANSFER METHODS FOR O-MINIMAL TOPOLOGY"

ALESSANDRO BERARDUCCI, MÁRIO EDMUNDO, AND MARGARITA OTERO

The definition of "definable orientation" in section 5 of [1] is not correct. Where it says: "for each point, there is a definably compact neighbourhood (of the point) N and a class...". It should say: "for each proper *m*-ball N of Y, there is a class...". (See section 4 in [1] for the definition of proper *m*-ball.) Thus the correct definition is:

DEFINITION. A definable orientation of a definable manifold Y of dimension m is a map s which assigns to each point $y \in Y$ a generator s(y) of the local definable homology group $H_m^{def}(Y, Y - y)$ and which is locally constant in the following sense: for each proper m-ball B of Y, there is a class $\zeta_B \in H_m^{def}(Y, Y - B)$ such that for each $p \in B$ the natural homomorphism $j_p^N : H_m^{def}(Y, Y - B) \to H_m^{def}(Y, Y - p)$, induced by the inclusion map $(Y, Y - B) \to (Y, Y - p)$, sends ζ_B into s(p).

REMARK. j_p^B is actually an isomorphism.

With this new definition, the proof of Theorem 5.2 in [1] (the existence and unicity of a generator of $H_m^{def}(X)$ compatible with a given orientation) should be changed accordingly as follows. As in [1], we prove the stronger result:

THEOREM. If N is a definably compact subset of a definable manifold Y of dimension m with a definable orientation s, then there is one and only one class $\zeta_N \in H_m^{def}(Y, Y - N)$ such that for each $p \in N$, J_p^N maps ζ_N to s(p).

PROOF. First observe that the proof of this statement, as given in [1], proves the unicity of the relative homology class ζ_N . To prove the existence, we use the unicity and we have to consider the following cases:

Case (a). N is contained in a proper *m*-ball of Y. Then the existence of ζ_N is ensured by definition.

Case (b). $N = N_1 \cup N_2$ and there exist ζ_{N_1} and ζ_{N_2} both satisfying the above result. Then using a suitable Mayer-Vietoris sequence (as in case 2 of [1]) we can ensure the existence of the required ζ_N .

Case (c): N is an arbitrary definably compact subset of Y. Then we argue as in case 5 of [1] to get first finitely many definably compact subsets N_1, \ldots, N_k of Y such that $N = N_1 \cup \cdots \cup N_k$ and each N_i is contained in a proper *m*-ball of Y, and then the result is obtained by induction on k using cases (a) and (b). \dashv

Note that an *m*-dimensional definable group G, equipped with its definable manifold structure, has a map s defined as in [1] (choose a generator $s(x) \in$

© 2007, Association for Symbolic Logic 0022-4812/07/7203-0021/\$1.20