THE JOURNAL OF SYMBOLIC LOGIC Volume 72, Number 3, Sept. 2007

LOCAL K^c CONSTRUCTIONS

J. R. STEEL

The full-background-extender K^c -construction of [2] has the property that, if it does not break down and produces a final model $L[\vec{E}]$, then

 δ is Woodin in $V \Rightarrow \delta$ is Woodin in $L[\vec{E}]$,

for all δ . It is natural to ask whether

 κ is strong in $V \Rightarrow \kappa$ is strong in $L[\vec{E}]$,

for all κ , or even better,

 κ is λ -strong in $V \Rightarrow \kappa$ is λ -strong in $L[\vec{E}]$.

As one might suspect, the more useful answer would be "yes".

For the K^c -construction of [2], this question is open. The problem is that the construction of [2] is not local: because of the full-background-extender demand, it may produce mice projecting to ρ at stages much greater than ρ . Because of this, there is no reason to believe that if E is a λ -strong extender of V, then $i_E(\vec{E}) \upharpoonright \lambda = \vec{E} \upharpoonright \lambda$. The natural proof only gives that if κ is Σ_2 -strong, then κ is strong in $L[\vec{E}]$.¹

We do not know how to get started on this question, and suspect that in fact strong cardinals in V may fail to be strong in $L[\vec{E}]$, if $L[\vec{E}]$ is the output of the construction of [2]. Therefore, we shall look for a modification of the construction of [2]. One might ask for a construction with output $L[\vec{E}]$ such that

- (1) iteration trees on $L[\vec{E}]$ can be lifted to iteration trees on V,
- (2) $\forall \delta(\delta \text{ is Woodin} \Rightarrow \delta \text{ is Woodin in } L[\vec{E}])$, and
- (3) (a) $\forall \kappa (\kappa \text{ is a strong cardinal} \Rightarrow \kappa \text{ is strong in } L[\vec{E}])$, and
 - (b) $\forall \kappa \forall \lambda (\text{Lim}(\lambda) \land \kappa \text{ is } \lambda \text{-strong} \Rightarrow \kappa \text{ is } \lambda \text{-strong in } L[\vec{E}]).$

In §1 we shall describe a construction which satisfies these demands, but we shall need to assume that V itself is a fine-structural inner model $L[\vec{F}][x]$, built over some set x.² In this case, the iterability reduction of (1) will produce iteration trees on V which may drop, though only when the tree on $L[\vec{E}]$ being lifted also drops. A reduction to non-dropping trees would have some use. We believe we

Received December 10, 2003.

¹This question, and the observations we have just recorded, are due to R. Jensen.

²There are applications of this result in [6]. For example, the minimal model of the $AD_{\mathbb{R}}$ -hypothesis, and related mice, reconstruct themselves below the sup of their Woodins via our modified construction, and this helps analyze the derived models of such mice. See [6, §3, §5].