SEQUENCES OF *n*-DIAGRAMS

VALENTINA S. HARIZANOV, JULIA F. KNIGHT, AND ANDREI S. MOROZOV

§1. Introduction. We consider only computable languages, and countable structures, with universe a subset of ω , which we think of as a set of constants. We identify sentences with their Gödel numbers. Thus, for a structure \mathscr{A} , the complete (elementary) diagram, $D^c(\mathscr{A})$, and the atomic diagram, $D(\mathscr{A})$, are subsets of ω . We classify formulas as usual. A formula is both Σ_0 and Π_0 if it is open. For n > 0, a formula, in prenex normal form, is Σ_n , or Π_n , if it has *n* blocks of like quantifiers, beginning with \exists , or \forall . For a formula θ , in prenex normal form, we let $neg(\theta)$ denote the dual formula that is logically equivalent to $\neg \theta$ —if θ is Σ_n , then $neg(\theta)$ is Π_n , and vice versa.

DEFINITION 1.1. For a structure \mathcal{A} , the *n*-diagram is

$$D_n(\mathscr{A}) = D^c(\mathscr{A}) \cap \Sigma_n.$$

We are interested in complexity, which we measure by Turing degree. We denote Turing reducibility by \leq_T , and Turing equivalence by \equiv_T . It is clear that for any structure \mathscr{A} , $D_0(\mathscr{A}) \equiv_T D(\mathscr{A})$. We show that for any \mathscr{A} , there exists $\mathscr{B} \cong \mathscr{A}$ such that $D^c(\mathscr{B}) \equiv_T D(\mathscr{B})$. If \mathscr{A} is an algebraically closed field, a real closed field, or any other structure in which we have effective elimination of quantifiers, then this collapse is "intrinsic"; i.e., it happens in all copies. For models of PA, the collapse is not intrinsic. For the standard model of arithmetic, $\mathscr{N} = (\omega, +, \cdot, S, 0)$, we have $D_n(\mathscr{N}) \equiv_T \emptyset^{(n)}$, uniformly in n. In [8], it is shown that for any model \mathscr{A} of PA, there exists $\mathscr{B} \cong \mathscr{A}$ such that $D_{n+1}(\mathscr{B}) \not\leq_T D_n(\mathscr{B})$.

We first consider the following problem.

PROBLEM 1. Find syntactic conditions on \mathscr{A} guaranteeing that for some n, for all $\mathscr{B} \cong \mathscr{A}$, $D^{c}(\mathscr{B}) \equiv_{T} D_{n}(\mathscr{B})$. In particular, for n = 0, find syntactic conditions guaranteeing that for all $\mathscr{B} \cong \mathscr{A}$, $D^{c}(\mathscr{B}) \equiv_{T} D(\mathscr{B})$.

For structures \mathscr{A} that do not exhibit intrinsic collapse of the complete diagram to the atomic diagram, we consider the sequences $(D_n(\mathscr{B}))_{n\in\omega}$ for $\mathscr{B} \cong \mathscr{A}$. We focus on the corresponding sequences of Turing degrees.

DEFINITION 1.2. (i) For sets X and Y, Y is c.e. in and above X if Y is c.e. relative to X, and $X \leq_T Y$.

© 2002, Association for Symbolic Logic 0022-4812/02/6703-0024/\$3.10

Received December 6, 2001; accepted February 13, 2002.

The authors gratefully acknowledge support of the NSF Binational Grant DMS-0075899.