CORE MODELS WITH MORE WOODIN CARDINALS

J. R. STEEL

In this paper, we shall prove two theorems involving the construction of core models with infinitely many Woodin cardinals. We assume familiarity with [12], which develops core model theory the one Woodin level, and with [10] and [6], which extend the fine structure theory of [5] to mice having many Woodin cardinals. The most important new problem of a general nature which we must face here concerns the iterability of K^c with respect to uncountable iteration trees.

Our first result is the following theorem, a slightly stronger version of which was proved independently and earlier by Woodin.¹ The theorem settles positively a conjecture of Feng, Magidor, and Woodin [2].

THEOREM. Let Ω be measurable. Then the following are equivalent:

- (a) for all posets $\mathbb{P}, \mathbb{Q} \in V_{\Omega}, L(\mathbb{R})^{V^{\mathbb{P}}} \equiv L(\mathbb{R})^{V^{\mathbb{Q}}}$,
- (b) for every poset $\mathbb{P} \in V_{\Omega}$, $V^{\mathbb{P}} \vDash AD^{L(\mathbb{R})}$,
- (c) for every poset $\mathbb{P} \in V_{\Omega}$, $V^{\mathbb{P}} \vDash$ there is no uncountable sequence of distinct reals in $L(\mathbb{R})$,
- (d) there is an Ω -iterable premouse of height Ω which satisfies "there are infinitely many Woodin cardinals".

It is an immediate corollary that if every set of reals in $L(\mathbb{R})$ is weakly homogeneous, then $AD^{L(\mathbb{R})}$ holds.² We shall also indicate some extensions of the theorem to pointclasses beyond $L(\mathbb{R})$, and mice with more than ω Woodin cardinals.

Our second result is an improved lower bound on the consistency strength of the failure of the unique branches hypothesis (UBH; cf. [3]) for certain sorts of iteration trees. Recall that an iteration tree \mathcal{T} is called *nonoverlapping* iff whenever E and F are extenders such that E is used before F along some branch of \mathcal{T} , then $lh(E) \leq crit(F)$. (See [11].) Nonoverlapping trees have special importance because the iteration trees which come up in inner model theory are all linear compositions of nonoverlapping trees.

THEOREM. If there is a nonoverlapping iteration tree \mathcal{T} on V, having distinct cofinal, wellfounded branches b and c, then there is an inner model with infinitely many Woodin cardinals, and if in addition, $\delta(\mathcal{T}) \in ran(i_b) \cap ran(i_c)$, then there is an inner model with a strong cardinal which is a limit of Woodin cardinals.

© 2002, Association for Symbolic Logic 0022-4812/02/6703-0023/\$4.00

Received July 16, 2001; revised December 28, 2002.

The author acknowledges the support received from NSF grant DMS 0100745.

¹Woodin proved the theorem under the weaker hypothesis that Ω is inaccessible in the Fall of 1991. We proved the theorem as stated in the Spring of 1992.

²The author proved this earlier, in the Fall of 1990, by similar but simpler methods.