ON REGULAR REDUCED PRODUCTS*

JULIETTE KENNEDY[†] AND SAHARON SHELAH[‡]

Abstract. Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. Assume *M* is a model of a first order theory *T* of cardinality at most λ^+ in a language $\mathscr{L}(T)$ of cardinality $\leq \lambda$. Let *N* be a model with the same language. Let Δ be a set of first order formulas in $\mathscr{L}(T)$ and let *D* be a regular filter on λ . Then *M* is Δ -embeddable into the reduced power N^{λ}/D , provided that every Δ -existential formula true in *M* is true also in *N*. We obtain the following corollary: for *M* as above and *D* a regular ultrafilter over λ , M^{λ}/D is λ^{++} -universal. Our second result is as follows: For $i < \mu$ let M_i and N_i be elementarily equivalent models of a language which has cardinality $\leq \lambda$. Suppose *D* is a regular filter on λ and $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ holds. We show that then the second player has a winning strategy in the Ehrenfeucht-Fraïssé game of length λ^+ on $\prod_i M_i/D$ and $\prod_i N_i/D$. This yields the following corollary: Assume GCH and λ regular (or just $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ and $2^{\lambda} = \lambda^+$). For *L*, M_i and N_i be as above, if *D* is a regular filter on λ , then $\prod_i M_i/D \cong \prod_i N_i/D$.

§1. Introduction. Suppose M is a first order structure and F is the Frechet filter on ω . Then the reduced power M^{ω}/F is \aleph_1 -saturated and hence \aleph_2 -universal ([6]). This was generalized by Shelah in [10] to any filter F on ω for which B^{ω}/F is \aleph_1 -saturated, where B is the two element Boolean algebra, and in [8] to all regular filters on ω . In the first part of this paper we use the combinatorial principle $\Box_{\lambda}^{b^*}$ of Shelah [11] to generalize the result from ω to arbitrary λ , assuming $\langle \aleph_0, \aleph_1 \rangle \rightarrow$ $\langle \lambda, \lambda^+ \rangle$. This gives a partial solution to Conjecture 19 in [3]: if D is a regular ultrafilter over λ , then for all infinite M, the ultrapower M^{λ}/D is λ^{++} -universal.

The second part of this paper addresses Problem 18 in [3], which asks if it is true that if *D* is a regular ultrafilter over λ , then for all elementarily equivalent models *M* and *N* of cardinality $\leq \lambda$ in a language of cardinality $\leq \lambda$, the ultrapowers M^{λ}/D and N^{λ}/D are isomorphic. Keisler [7] proved this for good *D* assuming $2^{\lambda} = \lambda^{+}$. Benda [1] weakened "good" to "contains a good filter". We prove the claim in full generality, assuming $2^{\lambda} = \lambda^{+}$ and $\langle \aleph_{0}, \aleph_{1} \rangle \rightarrow \langle \lambda, \lambda^{+} \rangle$.

Regarding our assumption $\langle\aleph_0, \aleph_1\rangle \rightarrow \langle\lambda, \lambda^+\rangle$, by Chang's Two-Cardinal Theorem ([2]) $\langle\aleph_0, \aleph_1\rangle \rightarrow \langle\lambda, \lambda^+\rangle$ is a consequence of $\lambda = \lambda^{<\lambda}$. So our Theorem 2 settles Conjecture 19 of [3], and Theorem 13 settles Conjecture 18 of [3], under GCH for λ regular. For singular strong limit cardinals $\langle\aleph_0, \aleph_1\rangle \rightarrow \langle\lambda, \lambda^+\rangle$ follows from \Box_{λ}

Received May 3, 2001; revised February 10, 2002.

^{*}This paper was written while the authors were guests of the Mittag-Leffler Institute, Djursholm, Sweden. The authors are grateful to the Institute for its support.

[†]Research partially supported by grant 1011049 of the Academy of Finland.

[‡]Research partially supported by the Binational Science Foundation. Publication number 769.