THE JOURNAL OF SYMBOLIC LOGIC Volume 67, Number 3, Sept. 2002

BOUNDED MARTIN'S MAXIMUM, WEAK ERDŐS CARDINALS, AND ψ_{AC}

DAVID ASPERÓ AND PHILIP D. WELCH*

Abstract. We prove that a form of the Erdős property (consistent with $V = L[H_{\omega_2}]$ and strictly weaker than the Weak Chang's Conjecture at ω_1), together with Bounded Martin's Maximum implies that Woodin's principle ψ_{AC} holds, and therefore $2^{\aleph_0} = \aleph_2$. We also prove that ψ_{AC} implies that every function $f: \omega_1 \to \omega_1$ is bounded by some canonical function on a club and use this to produce a model of the Bounded Semiproper Forcing Axiom in which Bounded Martin's Maximum fails.

§1. Introduction. Recall the following bounded form of Martin's Maximum ([Fo-M-S]), the maximal forcing axiom for collections of \aleph_1 -many antichains:

DEFINITION 1.1. Bounded Martin's Maximum (BMM) is the following statement: Sumpose \mathbb{D} is a stationary set proceeding poset (i.e., suppose \mathbb{D} is a stationary subset of ω).

Suppose \mathbb{P} is a stationary-set-preserving poset (i.e., every stationary subset of ω_1 remains stationary after forcing with \mathbb{P}) and $\langle A_i : i < \omega_1 \rangle$ is a sequence of maximal antichains of \mathbb{P} of size at most \aleph_1 . Then there is a filter $G \subseteq \mathbb{P}$ such that $G \cap A_i \neq \emptyset$ for all $i < \omega_1$.

Bounded forcing axioms, and *BMM* in particular, can be characterized as principles of generic absoluteness for Σ_1 formulas with parameters in H_{ω_2} . More precisely, the following holds ([**B**]):

CHARACTERIZATION 1.1. BMM holds if and only if for every $a \in H_{\omega_2}$ and every Σ_1 formula $\varphi(x)$, $H_{\omega_2} \models \varphi(a)$ iff there is some stationary-set-preserving poset \mathbb{P} such that $\Vdash_{\mathbb{P}} \varphi(\check{a})$.

We shall also consider the bounded forcing axiom obtained from replacing "stationary-set-preserving" by "semiproper" in the Definition 1.1. This is called *Bounded Semiproper Forcing Axiom (BSPFA)*. *BSPFA* can be characterized as a principle of generic absoluteness in a similar way as *BMM*. Specifically, in Characterization 1.1 one can replace "*BMM*" and "stationary-set-preserving" by "*BSPFA*" and "semiproper", respectively ([B]).

It turns out that *BSPFA* is equiconsistent with the existence of a so-called Σ_2 -reflecting cardinal, i.e., an inaccessible cardinal κ such that $V_{\kappa} \preccurlyeq_{\Sigma_2} V$, which is a

© 2002, Association for Symbolic Logic 0022-4812/02/6703-0018/\$2.20

Received April 6, 2001; revised December 20, 2001.

¹⁹⁹¹ Mathematics Subject Classification. 03E02, 03E50, 03E55.

Key words and phrases. Bounded Martin's Maximum, ψ_{AC} , bounding by canonical functions, Erdős cardinals.

^{*}Welch would like to thank the Institut für Formale Logik, Wien for a Gastprofessur during 2000-2002, where his part of this work was done.