THE JOURNAL OF SYMBOLIC LOGIC Volume 67, Number 3, Sept. 2002

SOME RESULTS ON PERMUTATION GROUP ISOMORPHISM AND CATEGORICITY

ANAND PILLAY AND MARK D. SCHLATTER

Abstract. We extend Morley's Theorem to show that if a theory is κ -p-categorical for some uncountable cardinal κ , it is uncountably categorical. We then discuss ω -p-categoricity and provide examples to show that similar extensions for the Baldwin-Lachlan and Lachlan Theorems are not possible.

§1. The basic definitions. We first start by defining a permutation group:

DEFINITION 1.1. A permutation group is a pair $\langle X, G \rangle$ (where X is a set and G is a group) together with an action of G on X such that for any $\sigma \in G$, if for all $x \in X$, $\sigma(x) = x$, then σ is the identity function.

DEFINITION 1.2. Given two permutation groups $\langle X_1, G_1 \rangle$ and $\langle X_2, G_2 \rangle$, we say that the two permutation groups are isomorphic if there exists a bijection $f: X_1 \to X_2$ such that the map $\sigma \mapsto f\sigma f^{-1}$ is an isomorphism of the groups G_1 and G_2 .

DEFINITION 1.3. Given a model M of a theory T, the permutation group associated with the model M is the pair $\langle |M|, Aut(M) \rangle$ (where |M| stands for the universe of the model, and Aut(M) stands for the group of automorphisms of M).

DEFINITION 1.4. Given two models M and N, we will say that M is permutation group isomorphic to N if the permutation group $\langle |M|, Aut(M) \rangle$ is isomorphic to $\langle |N|, Aut(N) \rangle$. Given a theory T, we will say T is κ -p-categorical if all of the models of T of size κ are permutation group isomorphic.

Our goal is to explore whether theorems about categoricity can be extended to p-categoricity. In particular, we will show:

THEOREM 1.5. Given T, a countable complete theory, if T is κ -p-isomorphic for some uncountable cardinal κ , then T is λ -categorical for all uncountable cardinals.

We will also provide counterexamples for similar extensions of the Baldwin-Lachlan and Lachlan theorems.

We end this section with two general and needed facts about permutation group isomorphisms. The first has a trivial proof; the second is a simple generalization of the corresponding fact about types (see, for example, Lemma 0.9 in [P]).

© 2002, Association for Symbolic Logic 0022-4812/02/6703-0002/\$1.50

Received December 10, 1999; revised August 28, 2001.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03C45.

The authors thank the suggestions of the referee in simplifying several proofs.