CONGRUENCE RELATIONS ON LATTICES OF RECURSIVELY ENUMERABLE SETS

TODD HAMMOND

§1. Introduction. Let $\{W_e\}_{e \in \omega}$ be a standard enumeration of the recursively enumerable (r. e.) subsets of $\omega = \{0, 1, 2, ...\}$. The lattice of recursively enumerable sets, \mathscr{C} , is the structure $(\{W_e\}_{e \in \omega}, \cup, \cap)$. \mathscr{R} is the sublattice of \mathscr{C} consisting of the recursive sets.

Suppose \mathscr{U} is a lattice of subsets of ω . \equiv is said to be a congruence relation on \mathscr{U} if \equiv is an equivalence relation on \mathscr{U} and if for all $U, U' \in \mathscr{U}$ and V, $V' \in \mathscr{U}$, if $U \equiv U'$ and $V \equiv V'$, then $U \cup U' \equiv V \cup V'$ and $U \cap U' \equiv V \cap V'$. $[U] = \{ V \in \mathscr{U} \mid V \equiv U \}$ is the equivalence class of U. If \equiv is a congruence relation on \mathscr{U} , the elements of the quotient lattice \mathscr{C}/\equiv are the equivalence classes of \equiv . $[U] \cup [V]$ is defined as $[U \cup V]$, and $[U] \cap [V]$ is defined as $[U \cap V]$.

The quotient lattices of \mathscr{C} (or of some sublattice \mathscr{U}) correspond naturally with the congruence relations which give rise to them, and in turn the congruence relations of sublattices of \mathscr{C} can be characterized in part by their computational complexity. The aim of the present paper is to characterize congruence relations in some of the most important complexity classes.

A few simple but important congruence relations can be defined on any lattice \mathscr{U} of subsets of ω . The congruence relation $=^*$ is defined by putting $U =^* V$ if and only if $U \Delta V$ is finite, where $U \Delta V = (U \cap \overline{V}) \cup (\overline{U} \cap V)$ is the symmetric difference of U and V. If X is any subset of ω , we define the congruence relation $=_X$ by putting $U =_X V$ if and only if $U \cap X = V \cap X$. Similarly, the congruence relation $=_X^*$ is defined by putting $U =_X^* V$ if and only if $U \cap X =^* V \cap X$.

An important theme in the study of the recursively enumerable sets has been to show that increasingly large classes of quotient lattices \mathscr{C}/\equiv share many of the algebraic properties of \mathscr{C} . One particularly important line of research started with the result of Friedberg [3] that there exists a maximal element in the quotient lattice $\mathscr{C}/=^*$. The lattice $\mathscr{C}/=^*$ is usually written \mathscr{C}^* . Robinson [11] extended Friedberg's result to prove that for any coinfinite low r. e. set A, there exists a maximal element in the quotient lattice $\mathscr{C}/=^*_A$. (A is said to be low if $A' \equiv_T \emptyset'$, where A' is the Turing jump of A, and where \equiv_T is Turing equivalence; see Soare [13] for more details.) The lattice $\mathscr{C}/=^*_X$ is often denoted $\mathscr{C}^*(X)$. Bennison and Soare [1] extended Robinson's

© 2002, Association for Symbolic Logic 0022-4812/02/6702-0001/\$1.80

Received December 29, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03D25, Secondary 06B10.

Key words and phrases. recursively enumerable, computably enumerable, congruence relation, ideal, quotient, lattice.