CONGRUENCE RELATIONS ON LATTICES OF RECURSIVELY ENUMERABLE SETS

TODD HAMMOND

§1. Introduction. Let $\left\{W_{e}\right\}_{e \in \omega}$ be a standard enumeration of the recursively enumerable (r.e.) subsets of $\omega=\{0,1,2, \ldots\}$. The lattice of recursively enumerable sets, \mathscr{E}, is the structure $\left(\left\{W_{e}\right\}_{e \in \omega}, \cup, \cap\right) . \mathscr{R}$ is the sublattice of \mathscr{E} consisting of the recursive sets.

Suppose \mathscr{U} is a lattice of subsets of $\omega . \equiv$ is said to be a congruence relation on \mathscr{U} if \equiv is an equivalence relation on \mathscr{U} and if for all $U, U^{\prime} \in \mathscr{U}$ and V, $V^{\prime} \in \mathscr{U}$, if $U \equiv U^{\prime}$ and $V \equiv V^{\prime}$, then $U \cup U^{\prime} \equiv V \cup V^{\prime}$ and $U \cap U^{\prime} \equiv V \cap V^{\prime}$. $[U]=\{V \in \mathscr{U} \mid V \equiv U\}$ is the equivalence class of U. If \equiv is a congruence relation on \mathscr{U}, the elements of the quotient lattice \mathscr{E} / \equiv are the equivalence classes of $\equiv[U] \cup[V]$ is defined as $[U \cup V]$, and $[U] \cap[V]$ is defined as $[U \cap V]$.

The quotient lattices of \mathscr{E} (or of some sublattice \mathscr{U}) correspond naturally with the congruence relations which give rise to them, and in turn the congruence relations of sublattices of \mathscr{E} can be characterized in part by their computational complexity. The aim of the present paper is to characterize congruence relations in some of the most important complexity classes.

A few simple but important congruence relations can be defined on any lattice \mathscr{U} of subsets of ω. The congruence relation $=^{*}$ is defined by putting $U={ }^{*} V$ if and only if $U \Delta V$ is finite, where $U \Delta V=(U \cap \bar{V}) \cup(\bar{U} \cap V)$ is the symmetric difference of U and V. If X is any subset of ω, we define the congruence relation $={ }_{X}$ by putting $U={ }_{X} V$ if and only if $U \cap X=V \cap X$. Similarly, the congruence relation $=_{X}^{*}$ is defined by putting $U=_{X}^{*} V$ if and only if $U \cap X={ }^{*} V \cap X$.

An important theme in the study of the recursively enumerable sets has been to show that increasingly large classes of quotient lattices \mathscr{E} / \equiv share many of the algebraic properties of \mathscr{E}. One particularly important line of research started with the result of Friedberg [3] that there exists a maximal element in the quotient lattice $\mathscr{E} /=^{*}$. The lattice $\mathscr{E} /={ }^{*}$ is usually written \mathscr{E}^{*}. Robinson [11] extended Friedberg's result to prove that for any coinfinite low r . e. set A, there exists a maximal element in the quotient lattice $\mathscr{E} /=_{\frac{*}{A}}^{*}$. (A is said to be low if $A^{\prime} \equiv_{T} \emptyset^{\prime}$, where A^{\prime} is the Turing jump of A, and where \equiv_{T} is Turing equivalence; see Soare [13] for more details.) The lattice $\mathscr{E} /=_{X}^{*}$ is often denoted $\mathscr{E}^{*}(X)$. Bennison and Soare [1] extended Robinson's

[^0]
[^0]: Received December 29, 1997.
 1991 Mathematics Subject Classification. Primary 03D25, Secondary 06B10.
 Key words and phrases. recursively enumerable, computably enumerable, congruence relation, ideal, quotient, lattice.

