THE JOURNAL OF SYMBOLIC LOGIC Volume 67, Number 1, March 2002

PFAFFIAN DIFFERENTIAL EQUATIONS OVER EXPONENTIAL O-MINIMAL STRUCTURES

CHRIS MILLER* AND PATRICK SPEISSEGGER[†]

In this paper, we continue investigations into the asymptotic behavior of solutions of differential equations over o-minimal structures.

Let \mathfrak{R} be an expansion of the real field $(\mathbb{R}, +, \cdot)$.

A differentiable map $F = (F_1, \ldots, F_l)$: $(a, b) \to \mathbb{R}^l$ is \mathfrak{R} -Pfaffian if there exists $G : \mathbb{R}^{1+l} \to \mathbb{R}^l$ definable in \mathfrak{R} such that F'(t) = G(t, F(t)) for all $t \in (a, b)$ and each component function $G_i : \mathbb{R}^{1+l} \to \mathbb{R}$ is independent of the last l - i variables $(i = 1, \ldots, l)$. If \mathfrak{R} is o-minimal and $F : (a, b) \to \mathbb{R}^l$ is \mathfrak{R} -Pfaffian, then (\mathfrak{R}, F) is o-minimal (Proposition 7). We say that $F : \mathbb{R} \to \mathbb{R}^l$ is ultimately \mathfrak{R} -Pfaffian if there exists $r \in \mathbb{R}$ such that the restriction $F \upharpoonright (r, \infty)$ is \mathfrak{R} -Pfaffian. (In general, ultimately abbreviates "for all sufficiently large positive arguments".)

The structure \mathfrak{R} is **closed under asymptotic integration** if for each ultimately nonzero unary (that is, $\mathbb{R} \to \mathbb{R}$) function f definable in \mathfrak{R} there is an ultimately differentiable unary function g definable in \mathfrak{R} such that $\lim_{t\to+\infty} [g'(t)/f(t)] = 1$. If \mathfrak{R} is closed under asymptotic integration, then \mathfrak{R} is o-minimal and defines $e^x \colon \mathbb{R} \to \mathbb{R}$ (Proposition 2).

Note that the above definitions make sense for expansions of arbitrary ordered fields.

THEOREM 1. If \mathfrak{R} is o-minimal, then the following are equivalent:

- 1. For every ultimately \mathfrak{R} -Pfaffian function $F : \mathbb{R} \to \mathbb{R}$ there exists $u : \mathbb{R} \to \mathbb{R}$ definable in \mathfrak{R} such that ultimately $F(t) \le u(t)$.
- 2. \Re is closed under asymptotic integration.
- 3. Every structure elementarily equivalent to \Re is closed under asymptotic integration.
- 4. For every $m \in \mathbb{N}$ and $f : \mathbb{R}^{m+1} \to \mathbb{R}$ definable in \mathfrak{R} there exists $u : \mathbb{R} \to \mathbb{R}$ definable in \mathfrak{R} such that $\lim_{t\to+\infty} u(t) = +\infty$ and, for all $a \in \mathbb{R}^m$,

$$\lim_{t\to+\infty} f(a,t)u'(t) = 0 \quad or \quad \lim_{t\to+\infty} |f(a,t)(1/u)'(t)| = +\infty.$$

5. For every $l \in \mathbb{N}$, ultimately \mathfrak{R} -Pfaffian $F : \mathbb{R} \to \mathbb{R}^l$ and $h : \mathbb{R}^{1+l} \to \mathbb{R}$ definable in \mathfrak{R} there exists $u : \mathbb{R} \to \mathbb{R}$ definable in \mathfrak{R} such that ultimately $h(t, F(t)) \le u(t)$.

© 2002, Association for Symbolic Logic 0022-4812/02/6701-0028/\$2.10

Received September 13, 2000; revised August 24, 2001.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03C64, 26A12, 34E99; Secondary 34E05.

^{*}Research supported by NSF Grants DMS-9896225 and DMS-9988855.

[†]Research supported by NSERC Grant OGP0009070 and in part by NSF Grant DMS-9988453.