THE JOURNAL OF SYMBOLIC LOGIC Volume 67, Number 1, March 2002

RELATION ALGEBRA REDUCTS OF CYLINDRIC ALGEBRAS AND AN APPLICATION TO PROOF THEORY

ROBIN HIRSCH, IAN HODKINSON, AND ROGER D. MADDUX*

Abstract. We confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal $\alpha \geq 3$ there is a logically valid sentence X, in a first-order language \mathscr{L} with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which may occur arbitrarily many times), X has a proof containing exactly $\alpha + 1$ variables, but X has no proof containing only α variables. This solves a problem posed by Tarski and Givant in 1987.

§1. Introduction. The completeness theorem of first-order logic says that every valid formula has a proof. However, results of Henkin and Monk showed that the proof of a formula may need more variables than are used in the formula itself. Establishing exactly how many variables are needed to prove a given valid formula can be rather delicate. To establish provability or non-provability with α variables, the methods of algebraic logic - cylindric algebras and relation algebras — are useful. α -dimensional cylindric algebras can be regarded, approximately, as algebras of α -ary relations and relation algebras are an algebraic approximation to algebras of binary relations. From an α -dimensional cylindric algebra \mathfrak{C} it is possible to obtain the relation algebra reduct $\Re \mathfrak{aC}$, and if $\alpha \geq 4$ this will be a relation algebra. The central part of this paper is the construction of some relation algebras $\mathfrak{N}^{\beta}_{\alpha}$, for $4 \leq \alpha \leq \beta < \omega$, and the proof, for sufficiently large β , that $\mathfrak{M}^{\beta}_{\alpha}$ is a subalgebra of $\mathfrak{Ra}\mathfrak{C}$ for some α -dimensional cylindric algebra \mathfrak{C}, but not a subalgebra of $\Re \mathfrak{C}'$ for any $(\alpha + 1)$ -dimensional cylindric algebra \mathfrak{C}' . In symbols, $\mathfrak{N}^{\beta}_{\alpha} \in S$ Ra CA $_{\alpha} \setminus S$ Ra CA $_{\alpha+1}$. This confirms a conjecture of Maddux, and is used to confirm a related conjecture of Monk about neat reducts of cylindric algebras. We apply this result to logic by showing, for each $\alpha \geq 3$, that there are valid formulas that can be proved with $\alpha + 1$ variables but not with only α variables in a proof system taken from [31].

Here in the introduction we discuss these classes of algebras, some of the history of this investigation, and the proof-theoretic consequences. In the second section

© 2002, Association for Symbolic Logic 0022-4812/02/6701-0012/\$2.70

Received December 9, 1998; revised December 22, 2000.

^{*}Research of the first two authors partially supported by UK EPSRC grants GR/L85961, GR/K54946, and GR/L85978. Thanks to Maarten Marx, Szabolcs Mikulás, Mark Reynolds, and the referee for helpful comments.