SOME WEAK FRAGMENTS OF $H A$ AND CERTAIN CLOSURE PROPERTIES

MORTEZA MONIRI AND MOJTABA MONIRI

Abstract

We show that Intuitionistic Open Induction iop is not closed under the rule $\operatorname{DNS}\left(\exists_{1}^{-}\right)$. This is established by constructing a Kripke model of iop $+\neg L_{y}(2 y>x)$, where $L_{y}(2 y>x)$ is universally quantified on x. On the other hand, we prove that iop is equivalent with the intuitionistic theory axiomatized by $P A^{-}$plus the scheme of weak $\neg \neg L N P$ for open formulas, where universal quantification on the parameters precedes double negation. We also show that for any open formula $\varphi(y)$ having only y free, $\left(P A^{-}\right)^{i} \vdash L_{y} \varphi(y)$. We observe that the theories iop, $i \forall_{1}$ and $i \Pi_{1}$ are closed under Friedman's translation by negated formulas and so under $V R$ and $I P$. We include some remarks on the classical worlds in Kripke models of iop.

§1. Preliminaries. 1.1 Let $D O R$ (resp. $P A^{-}$) be the finite set of usual axioms (including Trichotomy) for discretely ordered commutative rings with 1 (resp. their nonnegative parts) in the language $L=\{+, \cdot,<, 0,1\}$ of arithmetic. Peano Arithmetic $P A$ (resp. Heyting Arithmetic $H A$) is the classical (resp. intuitionistic, obtained by dropping the principle $P E M$ of excluded middle whose instance $P E M_{\varphi}$ on a formula φ is $\varphi \vee \neg \varphi$) first order theory axiomatized by $P A^{-}$together with the induction scheme whose instance with respect to a distinguished free variable x on a formula $\varphi(x, \bar{y})$ is

$$
I_{x} \varphi=I_{x} \varphi(x, \bar{y}): \forall \bar{y}(\varphi(0, \bar{y}) \wedge \forall x(\varphi(x, \bar{y}) \rightarrow \varphi(x+1, \bar{y})) \rightarrow \forall x \varphi(x, \bar{y}))
$$

1.2 The classical Open Induction fragment Iop of $P A$ is axiomatized by only keeping (besides $P A^{-}$) the instances of induction on open, i.e., quantifier-free, formulas. It was first studied by Shepherdson [6]. He constructed a (recursive) nonstandard model proving independence results, such as irrationality of $\sqrt{2}$, from Iop. Let $\widetilde{\mathbb{Q}}$ be the field of real algebraic numbers. Shepherdson's model was

$$
\begin{aligned}
\mathcal{S}_{t}(\mathbb{N})= & \cup_{n \in \mathbb{Z}^{>0}}\left(t^{\frac{1}{n}} \tilde{\mathbb{Q}}\left[t^{\frac{1}{n}}\right]+\mathbb{Z}\right)^{\geq 0} \\
= & \left\{a_{m} t^{\frac{m}{n}}+a_{m-1} t^{\frac{m-1}{n}}+\cdots+a_{1} t^{\frac{1}{n}}+a_{0}: n \in \mathbb{Z}^{>0}, m \in \mathbb{N}, a_{m}\right. \\
& \left.\cdots, a_{1} \in \tilde{\mathbb{Q}}, a_{0} \in \mathbb{Z}, a_{m} \geq 0, m>0 \rightarrow a_{m}>0\right\} .
\end{aligned}
$$

This is equipped with the obvious + and \cdot and the (non-Archimedean and consistent with + and \cdot) order induced by $t>\mathbb{N}$. We will use Shepherdson's model and also

[^0]
[^0]: Received December 23, 1998; revised October 8, 2000.
 Both authors acknowledge partial support from Institute for Studies in Theoretical Physics and Mathematics (IPM), Iran. Research of the second author was also supported by grant NRCI 3660.

