THE JOURNAL OF SYMBOLIC LOGIC Volume 71, Number 1, March 2006

AUTOMORPHISM GROUPS OF ARITHMETICALLY SATURATED MODELS

ERMEK S. NURKHAIDAROV

§0. Introduction. In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:

THEOREM 0.1. Let M_1, M_2 be countable arithmetically saturated models of Peano Arithmetic such that $\operatorname{Aut}(M_1) \cong \operatorname{Aut}(M_2)$. Then $\operatorname{SSy}(M_1) = \operatorname{SSy}(M_2)$.

We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:

THEOREM 0.2. Let M_1, M_2 be countable arithmetically saturated models of Peano Arithmetic such that $\operatorname{Aut}(M_1) \cong \operatorname{Aut}(M_2)$. Then for every $n < \omega$

 $(\omega, \operatorname{Rep}(\operatorname{Th}(M_1))) \models \operatorname{RT}_2^n iff(\omega, \operatorname{Rep}(\operatorname{Th}(M_2)) \models \operatorname{RT}_2^n.$

Here RT_2^n is Infinite Ramsey's Theorem stating that every 2-coloring of $[\omega]^n$ has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:

COROLLARY 0.3. There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.

The corollary is an improvement of a previous result [8] which shows the existence of only 2 such models.

I would like to thank my Ph.D. thesis advisor J. H. Schmerl for his enormous help in doing this research. I also would like to thank the referee of this paper for many helpful corrections and advices.

© 2006, Association for Symbolic Logic 0022-4812/06/7101-0010/\$2.40

Received February 15, 2005; revised July 23, 2005.