THE JOURNAL OF SYMBOLIC LOGIC Volume 70, Number 4, Dec. 2005

PFA IMPLIES $AD^{L(\mathbb{R})}$

JOHN R. STEEL

In this paper we shall prove

THEOREM 0.1. Suppose there is a singular strong limit cardinal κ such that \Box_{κ} fails; then AD holds in L(R).

See [10] for a discussion of the background to this problem. We suspect that more work will produce a proof of the theorem with its hypothesis that κ is a strong limit weakened to $\forall \alpha < \kappa(\alpha^{\omega} < \kappa)$, and significantly more work will enable one to drop the hypothesis that κ is a strong limit entirely. At present, we do not see how to carry out even the less ambitious project.

Todorcevic [23] has shown that if the Proper Forcing Axiom (PFA) holds, then \Box_{κ} fails for all uncountable cardinals κ . Thus we get immediately:

COROLLARY 0.2. PFA *implies* $AD^{L(\mathbb{R})}$.

It has been known since the early 90's that PFA implies PD, that PFA plus the existence of a strongly inaccessible cardinal implies $AD^{L(\mathbb{R})}$, and that PFA plus a measurable yields an inner model of $AD_{\mathbb{R}}$ containing all reals and ordinals.¹ As we do here, these arguments made use of Tororcevic's work, so that logical strength is ultimately coming from a failure of covering for some appropriate core models.

In late 2000, A. S. Zoble and the author showed that (certain consequences of) Todorcevic's Strong Reflection Principle (SRP) imply $AD^{L(\mathbb{R})}$. (See [22].) Since Martin's Maximum implies SRP, this gave the first derivation of $AD^{L(\mathbb{R})}$ from an "unaugmented" forcing axiom.²

It should be possible to adapt the techniques of Ketchersid's thesis [2], and thereby strengthen the conclusions of 0.1 and 0.2 to: there is an inner model of AD^+ plus $\Theta_0 < \Theta$ which contains all reals and ordinals. Unpublished work of Woodin shows that the existence of such an inner model implies the existence of a nontame mouse.³ At the moment, the author sees how to adapt the work in chapter 4 and section 5.1 of [2], but the proof of "branch condensation" in section 5.2 of [2] does not adapt to our situation in any straightforward way. This is the point at which Ketchersid brings in some additional properties of his generic embedding (mainly,

© 2005, Association for Symbolic Logic 0022-4812/05/7004-0013/\$5.20

Received December 20, 2003; revised June 14, 2005.

¹The first result is due to Woodin, relying heavily on Schimmerling's proof of Δ_2^1 determinacy from PFA. The second result is due to Woodin. For the third, see [1].

²In contrast to the arguments referred to in the last paragraph, [22] obtains logical strength from the generic elementary embedding given by a saturated ideal on ω_1 , together with simultaneous stationary reflection at ω_2 ; its argument traces back to Woodin's [24].

³The main part of Woodin's proof is described in [17].