THE JOURNAL OF SYMBOLIC LOGIC Volume 70, Number 3, Sept. 2005

BI-BOREL REDUCIBILITY OF ESSENTIALLY COUNTABLE BOREL EQUIVALENCE RELATIONS

GREG HJORTH*

This note answers a questions from [2] by showing that considered up to Borel reducibility, there are more essentially countable Borel equivalence relations than countable Borel equivalence relations. Namely:

THEOREM 0.1. There is an essentially countable Borel equivalence relation E such that for no countable Borel equivalence relation F (on a standard Borel space) do we have

 $E \sim_B F.$

The proof of the result is short. It does however require an extensive rear guard campaign to extract from the techniques of [1] the following

MESSY FACT 0.2. There are countable Borel equivalence relations $(E_x)_{x \in 2^{\mathbb{N}}}$ such that:

- (i) each E_x is defined on a standard Borel probability space (X_x, μ_x) ; each E_x is μ_x -invariant and μ_x -ergodic;
- (ii) for $x_1 \neq x_2$ and $A \mu_{x_1}$ -conull, we have $E_{x_1}|_A$ not Borel reducible to E_{x_2} ;

(iii) if $f: X_x \to X_x$ is a measurable reduction of E_x to itself, then $\mu_x(\operatorname{im}(f)) > 0$; (iv)

$$\bigcup_{x \in 2^{\mathbb{N}}} \{x\} \times X_x$$

is a standard Borel space on which the projection function

$$(x,z) \mapsto x$$

is Borel and the equivalence relation \hat{E} given by

$$(x,z)\hat{E}(x',z')$$

if and only if x = x' *and* zE_xz' *is Borel;*

2000 Mathematics Subject Classification. Primary 03E15. Secondary 20F67, 37A20.

© 2005, Association for Symbolic Logic 0022-4812/05/7003-0016/\$2.40

Received February 15, 2004; revised April 11, 2005.

Key words and phrases. Equivalence relation, Borel reducibility, near hyperbolic group, rigidity.

^{*}Partially supported by NSF grant DMS 0140503