DIOPHANTINE PROPERTIES OF SETS DEFINABLE IN O-MINIMAL STRUCTURES

A. J. WILKIE

§1. Introduction. Let \mathbb{M} be an o-minimal expansion of the ordered field of real numbers $\overline{\mathbb{R}}$, and let S be an \mathbb{M}-definable subset (parameters allowed unless otherwise stated) of \mathbb{R}^{n}. In this note I investigate questions concerning the distribution of points on S with integer coordinates. My main theorem gives an estimate which, though probably far from best possible, at least shows that the o-minimal assumption does have diophantine consequences. This is, perhaps, surprising in view of the flexibility that we now seem to have in constructing o-minimal expansions of $\overline{\mathbb{R}}$ (see, e. g. [7], [8], [9]).
1.1. Main Theorem. With \mathbb{M}, S as above, suppose further that S is of dimension 1 and that it contains no unbounded $\overline{\mathbb{R}}$-definable (without parameters) subset. Let $\varepsilon>0$ be given. Then for all sufficiently large R, the set $S \cap \mathbb{Z}^{n}$ contains at most R^{ε} points within any (euclidean) ball in \mathbb{R}^{n} of diameter R.

The restriction that S be eventually transcendental is obviously necessary (e.g., consider the graph of any univariate polynomial with integer coefficients), but it would be interesting to weaken the hypothesis that $\operatorname{dim}(S)=1$. I should also remark that for most o-minimal structures known to me, the bound R^{ε} can be improved to a power of $\log R$ and this is, I would guess, the right order of magnitude in general. One certainly cannot do better, as the $\langle\mathbb{R}$, exp \rangle-definable set $\left\{\langle x, y\rangle \in \mathbb{R}^{2}: x=2^{y}\right\}$ shows. (Or, for a polynomially bounded example, consider the expansion of $\overline{\mathbb{R}}$ by the set $\left\{\langle x, y\rangle \in \mathbb{R}^{2}: x=y^{\alpha}\right\}$ where, say, $\alpha=\log _{2} 3$.) However, in one interesting case, namely that of $\mathbb{M}=\mathbb{R}_{a n}$ (where the definable sets are exactly the globally subanalytic sets - see [2]), one can show that $\log \log R$ is the correct order of magnitude in the sense that if S is as in the Main Theorem, then there exists a constant $C>0$ such that for all sufficiently large R the set $S \cap \mathbb{Z}^{n}$ contains at most $C \log \log R$ points within any ball in \mathbb{R}^{n} of diameter R. This follows easily from my second result:-
1.2. Theorem. Let $\left\langle a_{n}: n \geq 1\right\rangle$ be a strictly increasing sequence of positive integers. Then the following are equivalent:
(a) there exists an $\mathbb{R}_{a n}$-definable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(a_{n}\right) \in \mathbb{Z}$ for all $n \geq 1$, and such that for no $r \in \mathbb{R}$ is $f \upharpoonright(r, \infty)$ an $\overline{\mathbb{R}}$-definable function (without parameters);
(b) there exists an integer $N \geq 1$ such that for all positive integers $n, a_{n+N} \geq a_{n}^{2}$.

[^0]
[^0]: Received March 3, 2004.

