PATTERNS OF PARADOX

ROY T. COOK

§1. A language of paradox. We begin with a propositional language L_P containing conjunction (\wedge), a class¹ of sentence names $\{S\alpha\}_{\alpha\in A}$, and a falsity predicate F. We (only) allow unrestricted infinite conjunctions, i.e., given any non-empty class of sentence names $\{S_{\beta}\}_{\beta\in B}$,

$$\wedge \{F(S_{\beta}): \beta \in B\}$$

is a well-formed formula (we will use WFF to denote the set of well-formed formulae).²

The language, as it stands, is unproblematic. Whether various paradoxes are produced depends on which names are assigned to which sentences. What is needed is a denotation function:

$$\delta: \{S_{\alpha}\}_{\alpha \in A} \to WFF.$$

For example, the L_P sentence " $F(S_1)$ " (i.e., $\wedge \{F(S_1)\}$), combined with a denotation function δ such that $\delta(S_1) = "F(S_1)$ ", provides the (or, in this context, a) *Liar Paradox*.

To give a more interesting example, *Yablo's Paradox* [4] can be reconstructed within this framework. *Yablo's Paradox* consists of an ω -sequence of sentences $\{S_k\}_{k \in \omega}$ where, for each $n \in \omega$:

$$S_n : (\forall k)(k > n \rightarrow False(S_k)).$$

Within L_P an equivalent construction can be obtained using infinite conjunction in place of universal quantification - the sentence names are $\{S_i\}_{i \in \omega}$ and the denotation function is given by:

$$\delta(S_i) = \wedge \{F(S_k) : k \rangle i\}.$$

We can express this in more familiar terms as:

$$S_1: F(S_2) \wedge F(S_3) \wedge \cdots \wedge F(S_n) \wedge F(S_{n+1}) \wedge \cdots$$

$$S_2: F(S_3) \wedge F(S_4) \wedge \cdots \wedge F(S_n) \wedge F(S_{n+1}) \wedge \cdots$$

$$S_3: F(S_4) \wedge F(S_5) \wedge \cdots \wedge F(S_n) \wedge F(S_{n+1}) \wedge \cdots$$

etc.

© 2004, Association for Symbolic Logic 0022-4812/04/6903-0008/\$1.80

Received July 1, 2002; revised March 19, 2004.

¹The class $\{S_{\alpha}\}_{\alpha \in A}$ may be either a set or proper class, where A is any appropriate class of indices. ²Intuitively, $\wedge [\{F(S_{\beta})\}\beta \in B]$ is the (possibly infinitary) conjunction asserting that each S_{β} is false, i.e., $F(S_{\beta_1}) \wedge F(S_{\beta_2}) \wedge \cdots \wedge F(S_{\beta_i}) \wedge \cdots$ I shall use the latter notation when convenient.