THE JOURNAL OF SYMBOLIC LOGIC Volume 68, Number 4, Dec. 2003

CORRIGENDUM TO "STRONG NORMALIZATION PROOF WITH CPS-TRANSLATION FOR SECOND ORDER CLASSICAL NATURAL DEDUCTION"

KOJI NAKAZAWA AND MAKOTO TATSUTA

Our paper [1] contains a serious error. Proposition 4.6 of [1] is actually false and hence our strong normalization proof does not work for the Curry-style $\lambda\mu$ -calculus. However, our method still can show that (1) the correction of Proposition 5.4 of [2], and (2) the correction of the proof of strong normalization of Church-style $\lambda\mu$ -calculus by CPS-translation.

Firstly, our method is still effective for the correction of Proposition 5.4 of [2]. The proposition claims that for any Curry-style $\lambda\mu$ -term u, which is not necessarily typable, if u^* is strongly normalizable, then u is strongly normalizable too. But its proof does not work, since Proposition 5.1 (i) of [2] is false because of erasing-continuation. Our method proves the similar result for the Curry-style $\lambda\mu$ -calculus by Propositions 4.3 and 4.12 of [1].

PROPOSITION. For any Curry-style $\lambda \mu$ -term u, if there exists an augmentation u^+ of u such that u^{+*} is strongly normalizable, then u is strongly normalizable.

Secondly, as mentioned in the concluding remarks of [1], our method is effective for the strong normalization proof of the Church-style $\lambda\mu$ -calculus, which is called the second-order typed $\lambda\mu$ -calculus in [2]. The strong normalization of the typed $\lambda\mu$ -calculus is proved in [2], but its proof with CPS-translation does not work since Proposition 5.5 of [2] is false because of erasing-continuation.

For the Church-style system, the CPS-translation preserves typability of terms, and the strong normalization is proved by our method in [1]. Definition 4.7 in [1] is naturally changed for Church-style terms as follows:

Aug
$$(\mu \alpha^{A}.t) = \{\mu \alpha^{A}.(\lambda z^{\perp}.t^{+})([\alpha^{A}]c^{\forall X.X}\vec{a}); t^{+} \in Aug(t), z^{\perp} \text{ is a fresh} \lambda \text{-variable and } \vec{a} \text{ is a finite sequence of terms and types}\}$$

Then, similarly to the case of the Curry-style, we can prove the following facts, where \triangleright_{λ} , \triangleright_{μ} and \triangleright_{\forall} are defined as in [2].

- **LEMMAS.** (1) If $t: \Gamma \vdash A, \Delta$ is provable in the typed $\lambda \mu$ -calculus, then there is an augmentation t^+ of t such that $t^+: \Gamma, (\forall X.X)^c \vdash A, \Delta$.
- (2) If $t \triangleright_{\lambda}^{1} u$ and t^{+} is an augmentation of t, then there exists an augmentation u^{+} of u such that $t^{+*} \triangleright^{+} u^{+*}$.

© 2003, Association for Symbolic Logic 0022-4812/03/6804-0024/\$1.20

Received September 2, 2003.