OUTER MODELS AND GENERICITY

M. C. STANLEY

§1. Introduction. Why is forcing the only known method for constructing outer models of set theory?

If V is a standard transitive model of ZFC, then a standard transitive model W of ZFC is an *outer model* of V if $V \subseteq W$ and $V \cap OR = W \cap OR$.

Is every outer model of a given model a generic extension? At one point Solovay conjectured that if $0^{\#}$ exists, then every real that does not construct $0^{\#}$ lies in L[G], for some G that is generic for some forcing $\mathbb{P} \in L$. Famously, this was refuted by Jensen's coding theorem. He produced a real that is generic for an L-definable class forcing property, but does not lie in any set forcing extension of L.

Beller, Jensen, and Welch in *Coding the universe* [BJW] revived Solovay's conjecture by asking the following question: Let $a \subseteq \omega$ be such that $L[a] \models "0^{\#}$ does not exist". Is there $a \ b \in L[a]$ such that $a \notin L[b]$ and a is set generic over L[b].

In [S1] it was shown that even if arbitrary inner models are allowed, rather than just ones of the form L[b], and even if we allow a to be class generic, the answer is No in general:

THEOREM 1.1. Let L_{α} be a minimal countable standard transitive model of ZFC. There exists a real x_{nwg} having the following three properties:

(1) $x_{nwg} \notin L_{\alpha}$.

(2) $L_{\alpha}[x_{nwg}] \models \text{ZFC}.$

(3) x_{nwg} is not definably generic over any outer model of L_{α} that does not already contain x_{nwg} .

A precise statement of (3) is the following: Assume that V is an outer model of L_{α} and that \mathbb{P} is a V-amenable partial ordering such that $(V; \mathbb{P})$ satisfies ZFC. Assume that the forcing relation restricted to sentences of bounded complexity is definable over $(V; \mathbb{P})$. (See Remark 1.8 regarding this hypothesis.) If G is a maximal filter on \mathbb{P} meeting every dense subclass of \mathbb{P} that is definable over $(V; \mathbb{P})$ and $x_{nwg} \in V[G]$, then $x_{nwg} \in V$.

For the sake of clarity, an elementary remark is in order. As is customary, we write "V" for the standard structure $(V; \in)$. If $S \subseteq V$, then "(V; S) satisfies ZFC" means that $(V; S, \in)$ satisfies ZFC in an enlarged language with a predicate symbol for S. In this case the axioms of ZFC are augmented by instances of Collection and Separation formulated in the enlarged language. We call this extended theory

© 2003, Association for Symbolic Logic 0022-4812/03/6802-0003/\$4.00

Received October 14, 1999; revised September 5, 2002.

Research supported by NSF grants DMS 9505157 and DMS 9803643.