
538 REVIEWS

Michael Rathjen. The superjump in Martin-Löf type theory. Logic Colloquium ’98,
Proceedings of the annual European summer meeting of the Association for Symbolic Logic,
held in Prague, Czech Republic, August 9–15, 1998, edited by Samuel R. Buss, Petr Hájek,
and Pavel Pudlák, Lecture notes in logic, no. 13, Association for Symbolic Logic, Urbana,
and A K Peters, Natick, Mass., 2000, pp. 363–386.
Using the concept of universes of types in Martin-Löf type theory, ML, Rathjen studies

the notion of the superjump in constructive mathematics. After presenting a brief history of
universes in type theory, he introduces a system of type theoryMLF by means of a universe
constructor. This constructor assigns to each operator F from families of sets to families
of sets a universe closed under F . This gives rise to the superjump in type theory. Rathjen
characterizes the systemMLFmainly in terms of two systems of set theory, both based on the
concept of Mahloness. The first system, KPMr , is a system of classical admissible set theory
with set foundation axiomatizing a recursively Mahlo universe. The second system is based
on Aczel’s constructive set theory CZF enriched by a rule (M). This rule is a reflection rule,
which asserts that arbitrary true sentences are reflected on set-inaccessible sets. Additionally,
Rathjen introduces a hierarchy of subsystems of CZF + (M) with n-inaccessible sets, CZFn,
exhausting the strength of CZF+ (M). Moreover, he gives an interpretation of CZFn within
MLF and an interpretation ofMLF within KPMr , the latter utilizing realizability models. He
also claims that all systems under discussion are of the same proof-theoretic strength.
At the end of Rathjen’s paper there is a discussion about the boundaries of Martin-Löf

type theory and a discussion about so-called old and new Martin-Löf type theory.
Michael Möllerfeld

Institut für mathematische Logik und Grundlagenforschung, Westfälische Wilhelms-
Universität, Einsteinstr. 62, D-48149 Münster, Germany. mimoe@math.uni-muenster.de.

Solomon Feferman. Computation on abstract data types. The extensional approach, with
an application to streams. Annals of pure and applied logic, vol. 81 (1996), pp. 75–113.
To quote from the opening sentence: “This paper is a continuation of theworkof Feferman

[in a pair of 1992 papers] which initiated an approach through a form of generalized recursion
theory (g.r.t.) to computation on abstract data types (ADTs). . . . [W]e separate out the
extensional part of the theory and show how it may be applied to computation on streams as
an ADT. One of the main new contributions here is an explanation of how this is to be done
for finite ‘nonterminating’ streams as well as infinite streams, and even more general partial
(‘gappy’) streams.”
For the present purpose, ADT’s are simply classes of structures closed under isomorphism.

A paradigm is provided by A-list structures, for an arbitrary set A. Such structures are
characterised up to isomorphism relative to A (by the operations Cons, Head and Tail, and
nil) as being the least structure containing nil and closed under Cons.
When one tries to construct, by analogy, the ADT of A-streams (i.e., possibly infinite

sequences of elements of A), problems arise, for example in connection with the possibility
of a similar characterisation up to isomorphism.
We work over many-sorted “functional structures” A = (A0, A1, . . . , An, F0, . . . , Fm)

where each Fk is a functional of type level � 2 over the Ai ’s of specified arity, and A0 is
the Boolean set {tt, ff}. The signature Σ of A is (n, 〈k, ik, jk〉k�m), i.e., a listing of n, m and
the types of the Fk ’s.
We review notation and basic concepts. The basic type-one objects are partial functions on

A, whichmeans that one has to dealwith the semantics of partially defined terms. So t ↓means
that t is defined; t1 = t2 means t1 ↓� t2 ↓� t1 = t2, and t1 � t2 means (t1 ↓� t2 ↓ ⇒ t1 = t2).
Also f : B ∼→ C means that f is a partial function from B to C , and f : B → C means
that f is total. Let i, j, k, l range over the sort indices 1, . . . , n, and let i , j, . . . range over
finite sequences of these. For i = i1, . . . , i� , write lh(i) = �, and let Ai = Ai1 , . . . , Ai� , with

