REVIEWS

Jónsson algebra is explained in detail. There is also an application to the calculation of the cofinality of partial orders of the form $([\lambda]^{\kappa}, \subseteq)$, where $[\lambda]^{\kappa}$ is the set of all subsets of λ that have cardinality κ . Specifically, it is shown that for any infinite cardinal κ and any non-zero $\alpha < \kappa$, cf $([\kappa^{+\alpha}]^{\kappa}, \subseteq) = \max \operatorname{pcf} \{\kappa^{+(\beta+1)} : \beta < \alpha\}$. This is one example from a rich collection of theorems in *Cardinal arithmetic* and subsequent works of Shelah concerning the relationship between covering numbers and pcf's. These results are quite useful in cardinal arithmetic and related areas. In addition to Shelah's original works, a good source for further theorems relating cofinalities and pcf's is an elegant recent article on pcf theory by Uri Abraham and Menachem Magidor, *Cardinal arithmetic*, which is available at www.cs.bgu.ac.il/~abraham/math.html and which will appear in the *Handbook of set theory*, to be published by Kluwer.

Chapter 9 covers Shelah's pp function. For singular cardinals λ , $pp(\lambda)$ is the supremum of all cardinals of the form $cf(\prod a/D)$, where a is a cofinal set of regular cardinals in λ , a has cardinality $cf(\lambda)$, and D is an ultrafilter on a that contains all final segments of a. In *Cardinal arithmetic*, Shelah proposes that $pp(\lambda)$ is the "true" $\lambda^{cf\lambda}$. One advantage it has over $\lambda^{cf\lambda}$ is that its value is much harder to change by forcing. For example, the results of Chapter 7 imply that $pp(\aleph_{\omega}) < \aleph_{\omega_4}$. Versions of the Galvin–Hajnal theorems from Chapter 2 are established for the pp function.

A couple of the proofs in the text contain minor gaps. (1) On page 109, the proof of Lemma 2.2.1 (the case of the free set lemma where the domain is a set A of regular cardinality κ and the set mapping K satisfies $|K(a)| < \lambda < \kappa$ for all $a \in A$) seems to go wrong at the end. The \subseteq -maximal set \mathcal{P} of pairwise disjoint popular sets at the end of the proof could be simply $\{A\}$ (if each K(a) is non-empty). This is easily repaired, but the entire argument can be worded more succinctly: denoting $X \cup \bigcup \{K(x) : x \in X\}$ by H[X], for $\xi < \lambda$, inductively choose a maximal independent subset X_{ξ} of $A \setminus \bigcup_{\eta < \xi} H[X_{\eta}]$. Then $|X_{\xi}| = \kappa$ for some $\xi < \lambda$, for otherwise $\bigcup_{\xi < \lambda} H[X_{\xi}]$ has size $< \kappa$ and for any $a \in A$ not in this set the maximality of each X_{ξ} and the fact that $a \notin K(x)$ for any $x \in X_{\xi}$ gives $K(a) \cap X_{\xi} \neq \emptyset$ for all $\xi < \lambda$, contradicting $|K(a)| < \lambda$. (2) The proof of Theorem 9.2.4, on page 277, introduces a club-guessing sequence for $S = \Sigma_{\mu,\aleph_0}$, using Lemma 4.5.3 to justify its existence. But Lemma 4.5.3 assumes that S is contained in a set of the form $\sum_{\kappa,\mu}$ where μ is uncountable. The proof of Lemma 4.5.3 for $\mu = \aleph_0$ is similar but somewhat harder. In *Cardinal arithmetic* the required result is Claim 2.3(2) of Chapter III. It can also be found in a useful preprint of Menachem Kojman entitled The A, B, C of pcf: a companion to pcf theory, part I, available at the time of writing of this review at www.cs.bgu.ac.il/~kojman. This preprint also contains several other club-guessing principles and develops the basic results of pcf theory using the coherent sequences that are discussed in Cardinal arithmetic in §0 of the Analytical guide on page 436.

MAXIM R. BURKE

Department of Mathematics and Computer Science, University of Prince Edward Island, Charlottetown PE, C1A 4P3, Canada. burke@upei.ca.

STEVO TODORCEVIC. *Topics in topology.* Lecture notes in mathematics, vol. 1652. Springer, Berlin, Heidelberg, New York, etc., 1997, viii + 153 pp.

Faithfully to its title, this book is an author's personal selection of several diverse topics in topology. It grew out of a set of lecture notes from a graduate course given by Todorcevic at the University of Toronto during the fall of 1995. The book consists of four independent chapters, each covering a different "topic" in general topology.

The first chapter is the longest and most extensive one. It is entitled *Compact sets in function spaces* and it considers $C_p(X)$, the space of continuous functions with respect to the topology of pointwise convergence on a Polish space X. The goal of Chapter I is to give