INTERNAL CONSISTENCY AND THE INNER MODEL HYPOTHESIS

SY-DAVID FRIEDMAN

There are two standard ways to establish consistency in set theory. One is to prove consistency using inner models, in the way that Gödel proved the consistency of GCH using the inner model L. The other is to prove consistency using outer models, in the way that Cohen proved the consistency of the negation of CH by enlarging L to a forcing extension $L[G]$.

But we can demand more from the outer model method, and we illustrate this by examining Easton's strengthening of Cohen's result:

Theorem 1 (Easton's Theorem). There is a forcing extension $L[G]$ of L in which GCH fails at every regular cardinal.

Assume that the universe V of all sets is rich in the sense that it contains inner models with large cardinals. Then what is the relationship between Easton's model $L[G]$ and V ? In particular, are these models compatible, in the sense that they are inner models of a common third model? If not, then the failure of GCH at every regular cardinal is consistent only in a weak sense, as it can only hold in universes which are incompatible with the universe of all sets. Ideally, we would like $L[G]$ to not only be compatible with V, but to be an inner model of V.

We say that a statement is internally consistent iff it holds in some inner model, under the assumption that there are inner models with large cardinals. By specifying what large cardinals are required, we obtain a new type of consistency result. Let $\operatorname{Con}(\mathrm{ZFC}+\varphi)$ stand for " $\mathrm{ZFC}+\varphi$ is consistent" and $\operatorname{Icon}(\mathrm{ZFC}+\varphi)$ stand for "there is an inner model of $\mathrm{ZFC}+\varphi$ ". A typical consistency result takes the form

$$
\operatorname{Con}(\mathrm{ZFC}+\mathrm{LC}) \rightarrow \operatorname{Con}(\mathrm{ZFC}+\varphi)
$$

where LC denotes some large cardinal axiom. An internal consistency result takes the form

$$
\operatorname{Icon}(\mathrm{ZFC}+\mathrm{LC}) \rightarrow \operatorname{Icon}(\mathrm{ZFC}+\varphi)
$$

Received February 4, 2006.
The author wishes to thank the Austrian Science Fund (FWF) for its generous support.

