BARWISE: ABSTRACT MODEL THEORY AND GENERALIZED QUANTIFIERS

JOUKO VÄÄNÄNEN

CONTENTS

1.	Introduction	37
2.	Generalized quantifiers	38
3.	Abstract logic	40
4.	Back-and-forth properties	42
5.	Lindström's Theorem	44
6.	Infinitary back-and-forth properties	46
7.	Characterizing infinitary logics	46
8.	Absolute logics	47
9.	New generalized quantifiers	49
10.	Conclusion	51

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties are

 κ -compactness. Any set of sentences of cardinality $\leq \kappa$, every finite subset of which has a model, has itself a model.

Löwenheim-Skolem Theorem down to κ . *If a sentence of the logic has a model, it has a model of cardinality at most* κ .

Interpolation Property. *If* ϕ *and* ψ *are sentences such that* $\models \phi \rightarrow \psi$ *, then there is* θ *such that* $\models \phi \rightarrow \theta$ *,* $\models \theta \rightarrow \psi$ *and the vocabulary of* θ *is the intersection of the vocabularies of* ϕ *and* ψ *.*

© 2004, Association for Symbolic Logic 1079-8986/04/1001-0004/\$2.70

Received January 6, 2003; revised January 10, 2003. Research partially supported by grant 40734 of the Academy of Finland.